Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

xtuner 微调报错,求指点 #260

Open
zhanbaohang opened this issue Sep 20, 2024 · 1 comment
Open

xtuner 微调报错,求指点 #260

zhanbaohang opened this issue Sep 20, 2024 · 1 comment

Comments

@zhanbaohang
Copy link

微调的时候出现这个问题,请问大佬们如何解决

(base) root@91bd5febc58b:/data/nlp_translate# CUDA_VISIBLE_DEVICES=2,3 NPROC_PER_NODE=2 xtuner train /data/nlp_translate/train_for_internlm/internlm2_5_chat_7b_qlora.py --deepspeed deepspeed_zero2
09/20 09:09:17 - mmengine - WARNING - Use random port: 29768
/opt/conda/lib/python3.8/site-packages/mmengine/optim/optimizer/zero_optimizer.py:11: DeprecationWarning: TorchScript support for functional optimizers is deprecated and will be removed in a future PyTorch release. Consider using the torch.compile optimizer instead.
from torch.distributed.optim import
[2024-09-20 09:09:22,245] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[WARNING] Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
[WARNING] sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.4
[WARNING] using untested triton version (3.0.0), only 1.0.0 is known to be compatible
/opt/conda/lib/python3.8/site-packages/deepspeed/runtime/zero/linear.py:49: FutureWarning: torch.cuda.amp.custom_fwd(args...) is deprecated. Please use torch.amp.custom_fwd(args..., device_type='cuda') instead.
def forward(ctx, input, weight, bias=None):
/opt/conda/lib/python3.8/site-packages/deepspeed/runtime/zero/linear.py:67: FutureWarning: torch.cuda.amp.custom_bwd(args...) is deprecated. Please use torch.amp.custom_bwd(args..., device_type='cuda') instead.
def backward(ctx, grad_output):
:219: RuntimeWarning: scipy._lib.messagestream.MessageStream size changed, may indicate binary incompatibility. Expected 56 from C header, got 64 from PyObject
09/20 09:09:26 - mmengine - WARNING - WARNING: command error: 'partially initialized module 'cv2' has no attribute 'gapi_wip_gst_GStreamerPipeline' (most likely due to a circular import)'!
09/20 09:09:26 - mmengine - WARNING -
Arguments received: ['xtuner', 'train', '/data/nlp_translate/train_for_internlm/internlm2_5_chat_7b_qlora.py', '--deepspeed', 'deepspeed_zero2']. xtuner commands use the following syntax:

    xtuner MODE MODE_ARGS ARGS

    Where   MODE (required) is one of ('list-cfg', 'copy-cfg', 'log-dataset', 'check-custom-dataset', 'train', 'test', 'chat', 'convert', 'preprocess', 'mmbench', 'eval_refcoco')
            MODE_ARG (optional) is the argument for specific mode
            ARGS (optional) are the arguments for specific command

Some usages for xtuner commands: (See more by using -h for specific command!)

    1. List all predefined configs:
        xtuner list-cfg
    2. Copy a predefined config to a given path:
        xtuner copy-cfg $CONFIG $SAVE_FILE
    3-1. Fine-tune LLMs by a single GPU:
        xtuner train $CONFIG
    3-2. Fine-tune LLMs by multiple GPUs:
        NPROC_PER_NODE=$NGPUS NNODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT ADDR=$ADDR xtuner dist_train $CONFIG $GPUS
    4-1. Convert the pth model to HuggingFace's model:
        xtuner convert pth_to_hf $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL
    4-2. Merge the HuggingFace's adapter to the pretrained base model:
        xtuner convert merge $LLM $ADAPTER $SAVE_PATH
        xtuner convert merge $CLIP $ADAPTER $SAVE_PATH --is-clip
    4-3. Split HuggingFace's LLM to the smallest sharded one:
        xtuner convert split $LLM $SAVE_PATH
    5-1. Chat with LLMs with HuggingFace's model and adapter:
        xtuner chat $LLM --adapter $ADAPTER --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
    5-2. Chat with VLMs with HuggingFace's model and LLaVA:
        xtuner chat $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --image $IMAGE --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
    6-1. Preprocess arxiv dataset:
        xtuner preprocess arxiv $SRC_FILE $DST_FILE --start-date $START_DATE --categories $CATEGORIES
    6-2. Preprocess refcoco dataset:
        xtuner preprocess refcoco --ann-path $RefCOCO_ANN_PATH --image-path $COCO_IMAGE_PATH --save-path $SAVE_PATH
    7-1. Log processed dataset:
        xtuner log-dataset $CONFIG
    7-2. Verify the correctness of the config file for the custom dataset:
        xtuner check-custom-dataset $CONFIG
    8. MMBench evaluation:
        xtuner mmbench $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $MMBENCH_DATA_PATH
    9. Refcoco evaluation:
        xtuner eval_refcoco $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $REFCOCO_DATA_PATH
    10. List all dataset formats which are supported in XTuner

Run special commands:

    xtuner help
    xtuner version

GitHub: https://github.com/InternLM/xtuner
@KMnO4-zx
Copy link
Contributor

KMnO4-zx commented Oct 4, 2024

可以去xtuner的官方仓库提交issue哦,哪里有负责解答~

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants