From 8dc59312ba2ef19d688e59534ae1226b722b2fdc Mon Sep 17 00:00:00 2001 From: JIMMY ZHAO Date: Sun, 26 May 2024 20:32:15 -0400 Subject: [PATCH] add proof for slud's inequality --- docs/chapter1/chapter1.md | 28 ++++++++++++++++++++++++---- 1 file changed, 24 insertions(+), 4 deletions(-) diff --git a/docs/chapter1/chapter1.md b/docs/chapter1/chapter1.md index 084cb8e..da814bf 100644 --- a/docs/chapter1/chapter1.md +++ b/docs/chapter1/chapter1.md @@ -690,10 +690,30 @@ $$ $$ P(\frac{X}{m} \geq \frac{1}{2}) \geq \frac{1}{2}\left[1 - \sqrt{1-\exp\left(-\frac{m\varepsilon^{2}}{1-\varepsilon^{2}}\right)}\right] $$ -其中$p = (1- \varepsilon)/2$。 - -该定理的证明使用了正态分布的标准尾边界,其所需前序知识超出了本笔记的讨论范围,详细证明可参考[论文](https://projecteuclid.org/download/pdf_1/euclid.aop/1176995801)。 - +其中$p = (1-\varepsilon)/2$。 + +$Proof.$ +二项随机变量$X$统计在$m$次独立伯努利试验中成功的次数,成功概率为$p$。对于对于大的$m$,二项分布$B(m,p)$可以近似为均值$\mu=mp$和方差$\sigma^2=mp(1-p)$的正态分布: +$$ +\begin{aligned} +\mu &= \frac{m(1-\varepsilon)}{2} \\ +\sigma^2 &= \frac{m(1-\varepsilon^2)}{4} +\end{aligned} +$$ +令$Z=\frac{X-\mu}{\sigma}$,代入$\mu$和$\sigma$,有: +$$ +P[\frac{X}{m} \geq \frac{1}{2}] = P[Z \geq \frac{\frac{m}{2}-\mu}{\sigma}] = P[Z \geq \frac{\varepsilon\sqrt{m}}{\sqrt{1-\varepsilon^2}}] +$$ +根据正态分布不等式(定理 20),有: +$$ +P[Z \geq x] \geq \frac{1}{2}\left[1 - \sqrt{1-\exp\left(-\frac{2x^2}{\pi}\right)}\right] \geq \frac{1}{2}\left[1 - \sqrt{1-\exp\left(-x^2\right)}\right] +$$ +代入可得: +$$ +P[Z \geq \frac{\varepsilon\sqrt{m}}{\sqrt{1-\varepsilon^2}}] \geq \frac{1}{2}\left[1 - \sqrt{1-\exp\left(-\frac{m\varepsilon^2}{1-\varepsilon^2}\right)}\right] +$$ +得证。 + ## 定理 18: Johnson-Lindenstrauss 引理