generated from databricks-industry-solutions/industry-solutions-blueprints
-
Notifications
You must be signed in to change notification settings - Fork 12
/
05-training.py
247 lines (178 loc) · 8.09 KB
/
05-training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Databricks notebook source
# MAGIC %md
# MAGIC You may find this series of notebooks at https://github.com/databricks-industry-solutions/digital-pathology. For more information about this solution accelerator, visit https://www.databricks.com/solutions/accelerators/digital-pathology.
# COMMAND ----------
# MAGIC %md
# MAGIC # Train a binary classifier with transfer learning
# MAGIC In this notebook, we use the labeled patches as a training set to train a classifier that predicts if a patch corresponds to a metastatic site or not.
# MAGIC To do so, we use transfer learning with `resnet18` model using pytorch, and log the resulting model with mlflow. In the next notebook we use this model to overlay a metastatic heatmap on a new slide.
# COMMAND ----------
# MAGIC %md
# MAGIC ## 0. Initial Config
# COMMAND ----------
# MAGIC %pip install pytorch_lightning==1.6.5
# COMMAND ----------
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import pytorch_lightning
import mlflow
import mlflow.pytorch
from mlflow.tracking import MlflowClient
# import mlflow
# plt.ion() # interactive mode
# COMMAND ----------
import json
import os
from pprint import pprint
project_name='digital-pathology'
user=dbutils.notebook.entry_point.getDbutils().notebook().getContext().tags().apply('user')
user_uid = abs(hash(user)) % (10 ** 5)
config_path=f"/dbfs/FileStore/{user_uid}_{project_name}_configs.json"
try:
with open(config_path,'rb') as f:
settings = json.load(f)
except FileNotFoundError:
print('please run ./config notebook and try again')
assert False
# COMMAND ----------
# DBTITLE 1,configuration
IMG_PATH = settings['img_path']
experiment_info=mlflow.set_experiment(settings['experiment_name'])
# COMMAND ----------
# MAGIC %md
# MAGIC ## 1. Load Data
# MAGIC We will use torchvision and `torch.utils.data` packages for loading the data.
# MAGIC Our aim is to train a model to classify extracted patches into normal `(0)` and tumor `(1)` based on provided annotations. Usually, this is a very small dataset to generalize upon, if trained from scratch. Since we are using transfer learning, we should be able to generalize reasonably well.
# MAGIC
# MAGIC This dataset is a very small subset of imagenet.
# COMMAND ----------
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = f'/dbfs{IMG_PATH}'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'test']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'test']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# COMMAND ----------
print(f"train/test dataset: {dataset_sizes}")
# COMMAND ----------
# MAGIC %md
# MAGIC ## 2. Training the model
# MAGIC Now, let’s write a general function to train a model. Here, we will illustrate:
# MAGIC
# MAGIC - Scheduling the learning rate
# MAGIC - Saving the best model
# MAGIC In the following, parameter scheduler is an [LR scheduler object](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) from `torch.optim.lr_scheduler`.
# COMMAND ----------
mlflow.pytorch.autolog()
# COMMAND ----------
# DBTITLE 1,generic training function
def train_model(model, criterion, optimizer, scheduler, num_epochs=5, log_model=False):
with mlflow.start_run(run_name='resnet-training') as run:
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'test']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'test' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
mlflow.log_metric('best_accuracy',float(best_acc))
if(log_model):
mlflow.pytorch.log_model(model_ft,'resent-dp')
return(run.info)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Finetuning the convnet
# MAGIC Now we load a pretrained `resnet18` model and reset final fully connected layer. We then re-train the model based on our dataset.
# COMMAND ----------
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Train and evaluate
# MAGIC Depending on the number of images, this step can take several minutes. For example for 500 patches on a `cpu` machine it takes `5` min to train. If you use a single-node cluster with 1 `gpu` this step (with 4 epochs) will take `30s`.
# COMMAND ----------
run_info=train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=4,log_model=True)
# COMMAND ----------
mlflow.end_run()
# COMMAND ----------
df = mlflow.search_runs([settings['experiment_id']])
# COMMAND ----------
df.sort_values(by='metrics.best_accuracy',ascending=False).display()