diff --git a/continuous_integration/gpuci/build.sh b/continuous_integration/gpuci/build.sh index 87cc643f5ab..ab3bc95c482 100644 --- a/continuous_integration/gpuci/build.sh +++ b/continuous_integration/gpuci/build.sh @@ -56,3 +56,7 @@ conda list --show-channel-urls rapids-logger "Python py.test for distributed" py.test distributed -v -m gpu --runslow --junitxml="$WORKSPACE/junit-distributed.xml" + +# cuDF spill stats monitoring must be enabled for this test +CUDF_SPILL=on CUDF_SPILL_STATS=1 DASK_DISTRIBUTED__DIAGNOSTICS__CUDF=1 \ + py.test distributed/diagnostics/tests/test_cudf_diagnostics.py -v -m gpu --runslow --junitxml="$WORKSPACE/junit-distributed.xml" diff --git a/distributed/dashboard/components/rmm.py b/distributed/dashboard/components/rmm.py index f955033b338..73764765703 100644 --- a/distributed/dashboard/components/rmm.py +++ b/distributed/dashboard/components/rmm.py @@ -1,7 +1,7 @@ from __future__ import annotations -import math -from textwrap import dedent +from collections.abc import Iterable +from typing import TypeVar from bokeh.core.properties import without_property_validation from bokeh.models import ( @@ -10,6 +10,7 @@ HoverTool, NumeralTickFormatter, OpenURL, + Range1d, TapTool, ) from bokeh.plotting import figure @@ -18,12 +19,19 @@ from dask.utils import format_bytes from distributed.dashboard.components import DashboardComponent, add_periodic_callback -from distributed.dashboard.components.scheduler import BOKEH_THEME, TICKS_1024 +from distributed.dashboard.components.scheduler import ( + BOKEH_THEME, + TICKS_1024, + XLABEL_ORIENTATION, + MemoryColor, +) from distributed.dashboard.utils import update from distributed.utils import log_errors +T = TypeVar("T") + -class RMMMemoryUsage(DashboardComponent): +class RMMMemoryUsage(DashboardComponent, MemoryColor): """ GPU memory usage plot that includes information about memory managed by RMM. If an RMM pool is being used, shows the amount of @@ -32,168 +40,166 @@ class RMMMemoryUsage(DashboardComponent): @log_errors def __init__(self, scheduler, width=600, **kwargs): + DashboardComponent.__init__(self) + MemoryColor.__init__(self, neutral_color="#76B900") + self.last = 0 self.scheduler = scheduler self.source = ColumnDataSource( { - "rmm-used": [1, 2], - "rmm-used-half": [0.5, 1], - "rmm-total": [2, 4], - "rmm-total-half": [1, 2], - "external-used": [2, 1], - "external-used-x": [3, 4.5], - "worker": ["a", "b"], - "gpu-index": [0, 0], - "y": [1, 2], - "escaped_worker": ["a", "b"], - "rmm_memory_text": [ - "RMM memory used: 1B/1B\nTotal GPU memory used: 1B/2B", - "RMM memory used: 1B/1B\nTotal GPU memory used: 1B/2B", - ], + "width": [], + "x": [], + "y": [], + "color": [], + "alpha": [], + "worker": [], + "escaped_worker": [], + "rmm_used": [], + "rmm_total": [], + "gpu_used": [], + "gpu_total": [], + "spilled": [], } ) - memory = figure( - title="RMM Memory", + self.root = figure( + title="RMM memory used", tools="", width=int(width / 2), - name="rmm_memory_histogram", + name="rmm_memory", **kwargs, ) - - rect = memory.rect( - source=self.source, - x="rmm-used-half", - y="y", - width="rmm-used", - height=1, - color="#76B900", - alpha=1.0, - ) - rect.nonselection_glyph = None - - rect = memory.rect( + rect = self.root.rect( source=self.source, - x="rmm-total-half", + x="x", y="y", - width="rmm-total", - height=1, - color="#76B900", - alpha=0.75, + width="width", + height=0.9, + color="color", + fill_alpha="alpha", + line_width=0, ) rect.nonselection_glyph = None - rect = memory.rect( - source=self.source, - x="external-used-x", - y="y", - width="external-used", - height=1, - color="#76B900", - alpha=0.5, + self.root.axis[0].ticker = BasicTicker(**TICKS_1024) + self.root.xaxis[0].formatter = NumeralTickFormatter(format="0.0 b") + self.root.xaxis.major_label_orientation = XLABEL_ORIENTATION + self.root.xaxis.minor_tick_line_alpha = 0 + self.root.x_range = Range1d(start=0) + self.root.yaxis.visible = False + self.root.ygrid.visible = False + self.root.toolbar_location = None + + tap = TapTool(callback=OpenURL(url="./info/worker/@escaped_worker.html")) + self.root.add_tools(tap) + + hover = HoverTool( + point_policy="follow_mouse", + tooltips=""" +
+ Worker:  + @worker +
+
+ RMM memory used:  + @rmm_used{0.00 b} / @rmm_total{0.00 b} +
+
+ GPU memory used:  + @gpu_used{0.00 b} / @gpu_total{0.00 b} +
+
+ Spilled to CPU:  + @spilled{0.00 b} +
+ """, ) - rect.nonselection_glyph = None - - memory.axis[0].ticker = BasicTicker(**TICKS_1024) - memory.xaxis[0].formatter = NumeralTickFormatter(format="0.0 b") - memory.xaxis.major_label_orientation = -math.pi / 12 - memory.x_range.start = 0 - - for fig in [memory]: - fig.xaxis.minor_tick_line_alpha = 0 - fig.yaxis.visible = False - fig.ygrid.visible = False - - tap = TapTool(callback=OpenURL(url="./info/worker/@escaped_worker.html")) - fig.add_tools(tap) - - fig.toolbar_location = None - fig.yaxis.visible = False - - hover = HoverTool() - hover.tooltips = "@worker : @rmm_memory_text" - hover.point_policy = "follow_mouse" - memory.add_tools(hover) - - self.memory_figure = memory + self.root.add_tools(hover) @without_property_validation @log_errors def update(self): + def quadlist(i: Iterable[T]) -> list[T]: + out = [] + for ii in i: + out += [ii, ii, ii, ii] + return out + workers = list(self.scheduler.workers.values()) - rmm_total = [] + + width = [] + x = [] + color = [] + max_limit = 0 rmm_used = [] - external_used = [] - gpu_index = [] - y = [] - worker = [] - external_used_x = [] - memory_max = 0 + rmm_total = [] + gpu_used = [] gpu_total = [] - rmm_memory_text = [] + spilled = [] - for idx, ws in enumerate(workers): + for ws in workers: try: rmm_metrics = ws.metrics["rmm"] gpu_metrics = ws.metrics["gpu"] gpu_info = ws.extra["gpu"] except KeyError: - continue - rmm_total_worker = rmm_metrics["rmm-total"] # RMM memory only - rmm_used_worker = rmm_metrics["rmm-used"] - gpu_total_worker = gpu_info["memory-total"] # All GPU memory - gpu_used_worker = gpu_metrics["memory-used"] + rmm_metrics = {"rmm-used": 0, "rmm-total": 0} + gpu_metrics = {"memory-used": 0} + gpu_info = {"memory-total": 0} + + try: + cudf_metrics = ws.metrics["cudf"] + except KeyError: + cudf_metrics = {"cudf-spilled": 0} - external_used_worker = gpu_used_worker - rmm_total_worker + rmm_used_worker = rmm_metrics["rmm-used"] # RMM memory only + rmm_total_worker = rmm_metrics["rmm-total"] + gpu_used_worker = gpu_metrics["memory-used"] # All GPU memory + gpu_total_worker = gpu_info["memory-total"] + spilled_worker = cudf_metrics["cudf-spilled"] or 0 # memory spilled to host - rmm_total.append(rmm_total_worker) + max_limit = max( + max_limit, gpu_total_worker, gpu_used_worker + spilled_worker + ) + color_i = self._memory_color(gpu_used_worker, gpu_total_worker, ws.status) + + width += [ + rmm_used_worker, + rmm_total_worker - rmm_used_worker, + gpu_used_worker - rmm_total_worker, + spilled_worker, + ] + x += [sum(width[-4:i]) + width[i] / 2 for i in range(-4, 0)] + color += [color_i, color_i, color_i, "grey"] + + # memory info rmm_used.append(rmm_used_worker) + rmm_total.append(rmm_total_worker) + gpu_used.append(gpu_used_worker) gpu_total.append(gpu_total_worker) - external_used.append(external_used_worker) - external_used_x.append(rmm_total_worker + external_used_worker / 2) - worker.append(ws.address) - gpu_index.append(idx) - y.append(idx) - - memory_max = max(memory_max, gpu_total_worker) - - rmm_memory_text.append( - "RMM memory used: {}/{}\nTotal GPU memory used: {}/{}".format( - format_bytes(rmm_used_worker), - format_bytes(rmm_total_worker), - format_bytes(gpu_used_worker), - format_bytes(gpu_total_worker), - ) - ) + spilled.append(spilled_worker) - self.memory_figure.title.text = dedent( - """\ - RMM Utilization: {} / {} - GPU Memory: {} / {} - """.format( - format_bytes(sum(rmm_used)), - format_bytes(sum(rmm_total)), - format_bytes(sum([*rmm_total, *external_used])), - format_bytes(sum(gpu_total)), - ) - ) + title = f"RMM memory used: {format_bytes(sum(rmm_used))} / {format_bytes(sum(rmm_total))}\nGPU memory used: {format_bytes(sum(gpu_used))} / {format_bytes(sum(gpu_total))}" + if sum(spilled): + title += f" + {format_bytes(sum(spilled))} spilled to CPU" + self.root.title.text = title result = { - "rmm-total": rmm_total, - "rmm-used": rmm_used, - "external-used": external_used, - "rmm-total-half": [m // 2 for m in rmm_total], - "rmm-used-half": [m // 2 for m in rmm_used], - "external-used-x": external_used_x, - "worker": worker, - "gpu-index": gpu_index, - "y": y, - "escaped_worker": [escape.url_escape(w) for w in worker], - "rmm_memory_text": rmm_memory_text, + "width": width, + "x": x, + "y": quadlist(range(len(workers))), + "color": color, + "alpha": [1, 0.7, 0.4, 1] * len(workers), + "worker": quadlist(ws.address for ws in workers), + "escaped_worker": quadlist(escape.url_escape(ws.address) for ws in workers), + "rmm_used": quadlist(rmm_used), + "rmm_total": quadlist(rmm_total), + "gpu_used": quadlist(gpu_used), + "gpu_total": quadlist(gpu_total), + "spilled": quadlist(spilled), } - self.memory_figure.x_range.end = memory_max - + self.root.x_range.end = max_limit update(self.source, result) @@ -202,5 +208,5 @@ def rmm_memory_doc(scheduler, extra, doc): rmm_load = RMMMemoryUsage(scheduler, sizing_mode="stretch_both") rmm_load.update() add_periodic_callback(doc, rmm_load, 100) - doc.add_root(rmm_load.memory_figure) + doc.add_root(rmm_load.root) doc.theme = BOKEH_THEME diff --git a/distributed/dashboard/components/scheduler.py b/distributed/dashboard/components/scheduler.py index 730aef89b0b..aacd4b21ff1 100644 --- a/distributed/dashboard/components/scheduler.py +++ b/distributed/dashboard/components/scheduler.py @@ -276,10 +276,17 @@ class MemoryColor: orange: float red: float - def __init__(self): + def __init__( + self, neutral_color="blue", target_color="orange", terminated_color="red" + ): + self.neutral_color = neutral_color + self.target_color = target_color + self.terminated_color = terminated_color + target = dask.config.get("distributed.worker.memory.target") spill = dask.config.get("distributed.worker.memory.spill") terminate = dask.config.get("distributed.worker.memory.terminate") + # These values can be False. It's also common to configure them to impossibly # high values to achieve the same effect. self.orange = min(target or math.inf, spill or math.inf) @@ -287,14 +294,14 @@ def __init__(self): def _memory_color(self, current: int, limit: int, status: Status) -> str: if status != Status.running: - return "red" + return self.terminated_color if not limit: - return "blue" + return self.neutral_color if current >= limit * self.red: - return "red" + return self.terminated_color if current >= limit * self.orange: - return "orange" - return "blue" + return self.target_color + return self.neutral_color class ClusterMemory(DashboardComponent, MemoryColor): diff --git a/distributed/diagnostics/cudf.py b/distributed/diagnostics/cudf.py new file mode 100644 index 00000000000..c118f7e5037 --- /dev/null +++ b/distributed/diagnostics/cudf.py @@ -0,0 +1,25 @@ +""" +Diagnostics for memory spilling managed by cuDF. +""" + +from __future__ import annotations + +try: + from cudf.core.buffer.spill_manager import get_global_manager +except ImportError: + get_global_manager = None + + +def real_time(): + if get_global_manager is None: + return {"cudf-spilled": None} + mgr = get_global_manager() + if mgr is None: + return {"cudf-spilled": None} + + totals = mgr.statistics.spill_totals + + return { + "cudf-spilled": totals.get(("gpu", "cpu"), (0,))[0] + - totals.get(("cpu", "gpu"), (0,))[0] + } diff --git a/distributed/diagnostics/tests/test_cudf_diagnostics.py b/distributed/diagnostics/tests/test_cudf_diagnostics.py new file mode 100644 index 00000000000..feb56818555 --- /dev/null +++ b/distributed/diagnostics/tests/test_cudf_diagnostics.py @@ -0,0 +1,45 @@ +from __future__ import annotations + +import os + +import pytest + +from distributed.utils_test import gen_cluster + +pytestmark = [ + pytest.mark.gpu, + pytest.mark.skipif( + os.environ.get("CUDF_SPILL", "off") != "on" + or os.environ.get("CUDF_SPILL_STATS", "0") != "1" + or os.environ.get("DASK_DISTRIBUTED__DIAGNOSTICS__CUDF", "0") != "1", + reason="cuDF spill stats monitoring must be enabled manually", + ), +] + +cudf = pytest.importorskip("cudf") + + +def force_spill(): + from cudf.core.buffer.spill_manager import get_global_manager + + manager = get_global_manager() + + # 24 bytes + df = cudf.DataFrame({"a": [1, 2, 3]}) + + return manager.spill_to_device_limit(1) + + +@gen_cluster( + client=True, + nthreads=[("127.0.0.1", 1)], +) +@pytest.mark.flaky(reruns=10, reruns_delay=5) +async def test_cudf_metrics(c, s, *workers): + w = list(s.workers.values())[0] + assert "cudf" in w.metrics + assert w.metrics["cudf"]["cudf-spilled"] == 0 + + await c.run(force_spill) + + assert w.metrics["cudf"]["cudf-spilled"] == 24 diff --git a/distributed/distributed-schema.yaml b/distributed/distributed-schema.yaml index 209cd3e255f..a64f84288f6 100644 --- a/distributed/distributed-schema.yaml +++ b/distributed/distributed-schema.yaml @@ -994,6 +994,12 @@ properties: not a problem and will be automatically disabled if no GPUs are found in the system, but in certain cases it may be desirable to completely disable NVML diagnostics. + cudf: + type: boolean + description: | + If ``True``, enables tracking of GPU spilling and unspilling managed by cuDF (if it is enabled). + Note that this forces a cuDF import at worker startup, which may be undesirable for performance + and memory footprint. computations: type: object properties: @@ -1001,7 +1007,7 @@ properties: type: integer minimum: 0 description: | - The maximum number of Computations to remember. + The maximum number of computations to remember. nframes: type: integer minimum: 0 diff --git a/distributed/distributed.yaml b/distributed/distributed.yaml index ade0af311b5..181b7da71e4 100644 --- a/distributed/distributed.yaml +++ b/distributed/distributed.yaml @@ -265,6 +265,7 @@ distributed: diagnostics: nvml: True + cudf: False computations: max-history: 100 nframes: 0 diff --git a/distributed/worker.py b/distributed/worker.py index 5e77db87d7c..db068d7244a 100644 --- a/distributed/worker.py +++ b/distributed/worker.py @@ -3232,6 +3232,22 @@ async def rmm_metric(worker): DEFAULT_METRICS["rmm"] = rmm_metric del _rmm +# avoid importing cuDF unless explicitly enabled +if dask.config.get("distributed.diagnostics.cudf"): + try: + import cudf as _cudf # noqa: F401 + except Exception: + pass + else: + from distributed.diagnostics import cudf + + async def cudf_metric(worker): + result = await offload(cudf.real_time) + return result + + DEFAULT_METRICS["cudf"] = cudf_metric + del _cudf + def print( *args,