forked from RentadroneCL/Photovoltaic_Fault_Detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_ssd.py
168 lines (130 loc) · 6.3 KB
/
predict_ssd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from keras import backend as K
from keras.models import load_model
from keras.preprocessing import image
from keras.optimizers import Adam
from imageio import imread
import numpy as np
from matplotlib import pyplot as plt
import json
import argparse
import os
import time
import sys
sys.path += [os.path.abspath('ssd_keras-master')]
from models.keras_ssd300 import ssd_300
from keras_loss_function.keras_ssd_loss import SSDLoss
from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes
from keras_layers.keras_layer_DecodeDetections import DecodeDetections
from keras_layers.keras_layer_DecodeDetectionsFast import DecodeDetectionsFast
from keras_layers.keras_layer_L2Normalization import L2Normalization
from ssd_encoder_decoder.ssd_output_decoder import decode_detections, decode_detections_fast
from data_generator.object_detection_2d_data_generator import DataGenerator
from data_generator.object_detection_2d_photometric_ops import ConvertTo3Channels
from data_generator.object_detection_2d_geometric_ops import Resize
from data_generator.object_detection_2d_misc_utils import apply_inverse_transforms
def get_session():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return tf.Session(config=config)
def makedirs(path):
try:
os.makedirs(path)
except OSError:
if not os.path.isdir(path):
raise
def _main(args=None):
# parse arguments
config_path = args.conf
input_path = args.input_path
output_path = args.output_path
with open(config_path) as config_buffer:
config = json.loads(config_buffer.read())
makedirs(args.output_path)
###############################
# Parse the annotations
###############################
score_threshold = 0.5
labels = config['model']['labels']
categories = {}
#categories = {"Razor": 1, "Gun": 2, "Knife": 3, "Shuriken": 4} #la categoría 0 es la background
for i in range(len(labels)): categories[labels[i]] = i+1
print('\nTraining on: \t' + str(categories) + '\n')
img_height = config['model']['input'] # Height of the model input images
img_width = config['model']['input'] # Width of the model input images
img_channels = 3 # Number of color channels of the model input images
n_classes = len(labels) # Number of positive classes, e.g. 20 for Pascal VOC, 80 for MS COCO
classes = ['background'] + labels
model_mode = 'training'
# TODO: Set the path to the `.h5` file of the model to be loaded.
model_path = config['train']['saved_weights_name']
# We need to create an SSDLoss object in order to pass that to the model loader.
ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0)
K.clear_session() # Clear previous models from memory.
model = load_model(model_path, custom_objects={'AnchorBoxes': AnchorBoxes,
'L2Normalization': L2Normalization,
'DecodeDetections': DecodeDetections,
'compute_loss': ssd_loss.compute_loss})
image_paths = []
if os.path.isdir(input_path):
for inp_file in os.listdir(input_path):
image_paths += [input_path + inp_file]
else:
image_paths += [input_path]
image_paths = [inp_file for inp_file in image_paths if (inp_file[-4:] in ['.jpg', '.png', 'JPEG'])]
times = []
for img_path in image_paths:
orig_images = [] # Store the images here.
input_images = [] # Store resized versions of the images here.
print(img_path)
# preprocess image for network
orig_images.append(imread(img_path))
img = image.load_img(img_path, target_size=(img_height, img_width))
img = image.img_to_array(img)
input_images.append(img)
input_images = np.array(input_images)
# process image
start = time.time()
y_pred = model.predict(input_images)
y_pred_decoded = decode_detections(y_pred,
confidence_thresh=score_threshold,
iou_threshold=score_threshold,
top_k=200,
normalize_coords=True,
img_height=img_height,
img_width=img_width)
print("processing time: ", time.time() - start)
times.append(time.time() - start)
# correct for image scale
# visualize detections
# Set the colors for the bounding boxes
colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()
plt.figure(figsize=(20,12))
plt.imshow(orig_images[0],cmap = 'gray')
current_axis = plt.gca()
#print(y_pred)
for box in y_pred_decoded[0]:
# Transform the predicted bounding boxes for the 300x300 image to the original image dimensions.
xmin = box[2] * orig_images[0].shape[1] / img_width
ymin = box[3] * orig_images[0].shape[0] / img_height
xmax = box[4] * orig_images[0].shape[1] / img_width
ymax = box[5] * orig_images[0].shape[0] / img_height
color = colors[int(box[0])]
label = '{}: {:.2f}'.format(classes[int(box[0])], box[1])
current_axis.add_patch(plt.Rectangle((xmin, ymin), xmax-xmin, ymax-ymin, color=color, fill=False, linewidth=2))
current_axis.text(xmin, ymin, label, size='x-large', color='white', bbox={'facecolor':color, 'alpha':1.0})
#plt.figure(figsize=(15, 15))
#plt.axis('off')
save_path = output_path + img_path.split('/')[-1]
plt.savefig(save_path)
plt.close()
file = open(output_path + 'time.txt','w')
file.write('Tiempo promedio:' + str(np.mean(times)))
file.close()
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description='train and evaluate ssd model on any dataset')
argparser.add_argument('-c', '--conf', help='path to configuration file')
argparser.add_argument('-i', '--input_path', help='folder input.', type=str)
argparser.add_argument('-o', '--output_path', help='folder output.', default='ouput/', type=str)
argparser.add_argument('--score_threshold', help='score threshold detection.', default=0.5, type=float)
args = argparser.parse_args()
_main(args)