forked from cisco/hash-sigs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_verify.c
244 lines (212 loc) · 8.5 KB
/
test_verify.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
* This bangs on the signature verification logic
*/
#include <stdio.h>
#include <stdlib.h>
#include "hss.h"
#include "test_hss.h"
static param_set_t h_array[] = {
LMS_SHA256_N32_H5,
LMS_SHA256_N32_H10
/* We don't test out the higher heights, because that'd take too */
/* long, and wouldn't tell us that much for this test */
};
#define MAX_H_INDEX (sizeof h_array / sizeof *h_array )
static param_set_t w_array[] = {
LMOTS_SHA256_N32_W1,
LMOTS_SHA256_N32_W2,
LMOTS_SHA256_N32_W4,
LMOTS_SHA256_N32_W8
};
#define MAX_W_INDEX (sizeof w_array / sizeof *w_array )
/* This is (roughly) the number of hash compression operatios needed to */
/* compute various OTS verifications. Really off by a factor of two; */
/* however that factor of two is consistent */
int cost_per_sig[4] = {
(1<<1) * 265,
(1<<2) * 133,
(1<<4) * 133,
(1<<8) * 34,
};
static bool do_verify( unsigned char *private_key, unsigned char *public_key,
unsigned char *aux_data, size_t len_aux_data,
size_t signature_len, bool fast_flag );
static bool generate_random(void *output, size_t length) {
unsigned char *p = output;
while (length--) {
*p++ = rand() % 256;
}
return true;
}
bool test_verify(bool fast_flag, bool quiet_flag) {
int d;
int i;
struct {
int d;
param_set_t h;
param_set_t w;
float est_cost;
} work_array[ 8 * MAX_H_INDEX * MAX_W_INDEX ];
int w_count = 0;
float total_cost = 0;
/* Fill in the jobs we expect to do */
int max_d = 0;
for (d = 1; d <= 8; d++) {
if (fast_flag && d > 3) continue;
int h_index, w_index;
for (h_index=0; h_index < MAX_H_INDEX; h_index++) {
for (w_index=0; w_index < MAX_W_INDEX; w_index++) {
param_set_t h = h_array[h_index];
param_set_t w = w_array[w_index];
/* Note: this particular combination takes longer than the */
/* rest combined; it wouldn't tell us much more, so skip it */
if (h == LMS_SHA256_N32_H10 && w == LMOTS_SHA256_N32_W8) continue;
/* In fast mode, we both testing out W=8 only for d=1 */
if (fast_flag && d > 1 && w == LMOTS_SHA256_N32_W8) continue;
work_array[w_count].d = max_d = d;
work_array[w_count].h = h;
work_array[w_count].w = w;
/* Compute the estimated cost */
param_set_t lm_array[8], lm_ots_array[8];
for (i=0; i<d; i++) { lm_array[i] = h; lm_ots_array[i] = w; }
size_t sig_len = hss_get_signature_len(d, lm_array, lm_ots_array );
if (sig_len == 0) continue;
float est_cost = cost_per_sig[w_index] * sig_len;
work_array[w_count].est_cost = est_cost;
total_cost += est_cost;
w_count++;
} }
}
float cost_so_far = 0;
int displayed_percent = 0;
for (i=0; i<w_count; i++) {
if (!quiet_flag) {
int new_percent = (int)(100 * cost_so_far / total_cost);
if (new_percent > displayed_percent) {
printf( " %d%% (height = %d/%d)\r", new_percent, work_array[i].d, max_d );
fflush(stdout);
displayed_percent = new_percent;
}
cost_so_far += work_array[i].est_cost;
}
param_set_t lm_array[8], lm_ots_array[8];
int j;
int d = work_array[i].d;
for (j=0; j<d; j++) { lm_array[j] = work_array[i].h;
lm_ots_array[j] = work_array[i].w; }
for ( ; j<8; j++) { lm_array[j] = 0; lm_ots_array[j] = 0; }
size_t len_private_key = hss_get_private_key_len(d, lm_array, lm_ots_array );
if (len_private_key == 0) {
printf( " Len private key failed\n" );
return false;
}
unsigned char private_key[len_private_key];
unsigned len_public_key = hss_get_public_key_len(d, lm_array, lm_ots_array );
if (len_public_key == 0) {
printf( " Len public key failed\n" );
return false;
}
unsigned char public_key[len_public_key];
size_t len_signature = hss_get_signature_len(d, lm_array, lm_ots_array );
if (len_signature == 0) {
printf( " Len signature failed\n" );
return false;
}
unsigned char aux_data[1000];
/* Gen a private key with that parameter set */
if (!hss_generate_private_key(
generate_random,
d, lm_array, lm_ots_array,
NULL, private_key,
public_key, len_public_key,
aux_data, sizeof aux_data, 0 )) {
printf( " Gen private key failed\n" );
return false;
}
/* Run tests; start at the initial position (seqno 0) */
if (!do_verify( private_key, public_key, aux_data, sizeof aux_data, len_signature, fast_flag )) {
return false;
}
/* TODO: try at other sequence numbers */
}
if (!quiet_flag) printf( "\n" );
return true;
}
/*
* This will test out the signature at the current offset of the private key
*/
static bool do_verify( unsigned char *private_key, unsigned char *public_key,
unsigned char *aux_data, size_t len_aux_data,
size_t signature_len, bool fast_flag ) {
bool success = false;
unsigned char signature[signature_len];
/* Step 1: load the private key into memory */
struct hss_working_key *w = hss_load_private_key(
NULL, private_key,
0, /* Minimal memory */
aux_data, len_aux_data, 0 );
if (!w) {
printf( " *** failed loading private key\n" );
goto failed;
}
/* Step 2: generate a valid signature */
char test_message[3] = "abc";
if (!hss_generate_signature( w, NULL, private_key,
test_message, sizeof test_message,
signature, signature_len, 0 )) {
printf( " *** failed signaing test message\n" );
goto failed;
}
/* Make sure that the signature verifies correctly */
if (!hss_validate_signature( public_key, test_message, sizeof test_message,
signature, signature_len, 0)) {
printf( " *** verification failed when it should have passed\n" );
goto failed;
}
/* Make sure that the signature fails if we pass the wrong message */
char wrong_message[3] = "abd";
struct hss_extra_info info = { 0 };
if (hss_validate_signature( public_key, wrong_message, sizeof wrong_message,
signature, signature_len, &info)) {
printf( " *** verification passed; should have failed (incorrect message)\n" );
goto failed;
}
if (hss_extra_info_test_error_code(&info) != hss_error_bad_signature) {
printf( " *** incorrect error code (incorrect message)\n" );
goto failed;
}
/* Make sure that the signature fails if the signature is too short */
if (hss_validate_signature( public_key, test_message, sizeof test_message,
signature, signature_len-1, &info)) {
printf( " *** verification passed; should have failed (signature too short)\n" );
goto failed;
}
if (hss_extra_info_test_error_code(&info) != hss_error_bad_signature) {
printf( " *** incorrect error code (short sig)\n" );
goto failed;
}
/* Now, go through the signature, and flip each bit; make sure that it fails */
int i, b;
for (i=0; i<signature_len; i++) {
for (b = 0; b<8; b++) {
/* In fast mode, only test some of the possible bit flips */
if (fast_flag && (8*i + b) % 29 != 7) continue;
signature[i] ^= (1<<b);
if (hss_validate_signature( public_key, test_message, sizeof test_message,
signature, signature_len, &info)) {
printf( " *** verification passed when it should have failed (flip bit %d, %d)\n", i, b );
goto failed;
}
if (hss_extra_info_test_error_code(&info) != hss_error_bad_signature) {
printf( " *** incorrect error code (bit flip)\n" );
goto failed;
}
signature[i] ^= (1<<b);
}
}
/* ... */
success = true;
failed:
hss_free_working_key(w);
return success;
}