-
Notifications
You must be signed in to change notification settings - Fork 150
/
Copy pathstore.py
152 lines (125 loc) · 5.41 KB
/
store.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from typing import Any, Optional
from sqlalchemy import delete
from langchain_community.vectorstores.pgvector import PGVector
from langchain_core.documents import Document
from langchain_core.runnables.config import run_in_executor
from sqlalchemy.orm import Session
from langchain_mongodb import MongoDBAtlasVectorSearch
from langchain_core.embeddings import Embeddings
from typing import (
List,
Optional,
Tuple,
)
import copy
class ExtendedPgVector(PGVector):
def get_all_ids(self) -> list[str]:
with Session(self._bind) as session:
results = session.query(self.EmbeddingStore.custom_id).all()
return [result[0] for result in results if result[0] is not None]
def get_documents_by_ids(self, ids: list[str]) -> list[Document]:
with Session(self._bind) as session:
results = (
session.query(self.EmbeddingStore)
.filter(self.EmbeddingStore.custom_id.in_(ids))
.all()
)
return [
Document(page_content=result.document, metadata=result.cmetadata or {})
for result in results
if result.custom_id in ids
]
def _delete_multiple(
self, ids: Optional[list[str]] = None, collection_only: bool = False
) -> None:
with Session(self._bind) as session:
if ids is not None:
self.logger.debug(
"Trying to delete vectors by ids (represented by the model "
"using the custom ids field)"
)
stmt = delete(self.EmbeddingStore)
if collection_only:
collection = self.get_collection(session)
if not collection:
self.logger.warning("Collection not found")
return
stmt = stmt.where(
self.EmbeddingStore.collection_id == collection.uuid
)
stmt = stmt.where(self.EmbeddingStore.custom_id.in_(ids))
session.execute(stmt)
session.commit()
class AsyncPgVector(ExtendedPgVector):
async def get_all_ids(self) -> list[str]:
return await run_in_executor(None, super().get_all_ids)
async def get_documents_by_ids(self, ids: list[str]) -> list[Document]:
return await run_in_executor(None, super().get_documents_by_ids, ids)
async def delete(
self, ids: Optional[list[str]] = None, collection_only: bool = False
) -> None:
await run_in_executor(None, self._delete_multiple, ids, collection_only)
class AtlasMongoVector(MongoDBAtlasVectorSearch):
@property
def embedding_function(self) -> Embeddings:
return self.embeddings
def add_documents(self, docs: list[Document], ids: list[str]):
#{file_id}_{idx}
new_ids = [id for id in range(len(ids))]
file_id = docs[0].metadata['file_id']
f_ids = [f'{file_id}_{id}' for id in new_ids]
return super().add_documents(docs, f_ids)
def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
docs = self._similarity_search_with_score(
embedding,
k=k,
pre_filter=filter,
post_filter_pipeline=None,
**kwargs,
)
# remove `metadata._id` since MongoDB ObjectID is not serializable
# Process the documents to remove metadata._id
processed_documents: List[Tuple[Document, float]] = []
for document, score in docs:
# Make a deep copy of the document to avoid mutating the original
doc_copy = copy.deepcopy(
document.__dict__
) # If Document is a dataclass or similar; adjust as needed
# Remove _id field from metadata if it exists
if "metadata" in doc_copy and "_id" in doc_copy["metadata"]:
del doc_copy["metadata"]["_id"]
# Create a new Document instance without the _id
new_document = Document(
**doc_copy
) # Adjust this line according to how you instantiate your Document
# Append the new document and score to the list as a tuple
processed_documents.append((new_document, score))
return processed_documents
def get_all_ids(self) -> list[str]:
# implement the return of unique file_id fields in self._collection
return self._collection.distinct("file_id")
def get_documents_by_ids(self, ids: list[str]) -> list[Document]:
# implement the return of documents by file_id in self._collection
return [
Document(
page_content=doc["text"],
metadata={
"file_id": doc["file_id"],
"user_id": doc["user_id"],
"digest": doc["digest"],
"source": doc["source"],
"page": int(doc.get("page", 0)),
},
)
for doc in self._collection.find({"file_id": {"$in": ids}})
]
def delete(self, ids: Optional[list[str]] = None) -> None:
# implement the deletion of documents by file_id in self._collection
if ids is not None:
self._collection.delete_many({"file_id": {"$in": ids}})