-
Notifications
You must be signed in to change notification settings - Fork 0
/
dict.c
631 lines (543 loc) · 14.2 KB
/
dict.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/*
* This file is part of ltrace.
* Copyright (C) 2012, 2013 Petr Machata, Red Hat Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "dict.h"
struct status_bits {
unsigned char taken : 1;
unsigned char erased : 1;
};
static struct status_bits *
bitp(struct dict *dict, size_t n)
{
return VECT_ELEMENT(&dict->status, struct status_bits, n);
}
void
dict_init(struct dict *dict,
size_t key_size, size_t value_size,
size_t (*hash1)(const void *),
int (*eq)(const void *, const void *),
size_t (*hash2)(size_t))
{
assert(hash1 != NULL);
assert(eq != NULL);
vect_init(&dict->keys, key_size);
vect_init(&dict->values, value_size);
VECT_INIT(&dict->status, struct status_bits);
dict->size = 0;
dict->hash1 = hash1;
dict->hash2 = hash2;
dict->eq = eq;
}
struct clone_data {
struct dict *target;
int (*clone_key)(void *tgt, const void *src, void *data);
int (*clone_value)(void *tgt, const void *src, void *data);
void (*dtor_key)(void *tgt, void *data);
void (*dtor_value)(void *tgt, void *data);
void *data;
};
static enum callback_status
clone_cb(void *key, void *value, void *data)
{
struct clone_data *clone_data = data;
char nkey[clone_data->target->keys.elt_size];
if (clone_data->clone_key == NULL)
memmove(nkey, key, sizeof(nkey));
else if (clone_data->clone_key(&nkey, key, clone_data->data) < 0)
return CBS_STOP;
char nvalue[clone_data->target->values.elt_size];
if (clone_data->clone_value == NULL) {
memmove(nvalue, value, sizeof(nvalue));
} else if (clone_data->clone_value(&nvalue, value,
clone_data->data) < 0) {
fail:
if (clone_data->clone_key != NULL)
clone_data->dtor_key(&nkey, clone_data->data);
return CBS_STOP;
}
if (dict_insert(clone_data->target, nkey, nvalue) < 0) {
if (clone_data->clone_value != NULL)
clone_data->dtor_value(&nvalue, clone_data->data);
goto fail;
}
return CBS_CONT;
}
int
dict_clone(struct dict *target, const struct dict *source,
int (*clone_key)(void *tgt, const void *src, void *data),
void (*dtor_key)(void *tgt, void *data),
int (*clone_value)(void *tgt, const void *src, void *data),
void (*dtor_value)(void *tgt, void *data),
void *data)
{
assert((clone_key != NULL) == (dtor_key != NULL));
assert((clone_value != NULL) == (dtor_value != NULL));
dict_init(target, source->keys.elt_size, source->values.elt_size,
source->hash1, source->eq, source->hash2);
struct clone_data clone_data = {
target, clone_key, clone_value, dtor_key, dtor_value, data
};
if (dict_each((struct dict *)source, NULL,
clone_cb, &clone_data) != NULL) {
dict_destroy(target, dtor_key, dtor_value, data);
return -1;
}
return 0;
}
size_t
dict_size(const struct dict *dict)
{
return dict->size;
}
int
dict_empty(const struct dict *dict)
{
return dict->size == 0;
}
struct destroy_data {
void (*dtor_key)(void *tgt, void *data);
void (*dtor_value)(void *tgt, void *data);
void *data;
};
static enum callback_status
destroy_cb(void *key, void *value, void *data)
{
struct destroy_data *destroy_data = data;
if (destroy_data->dtor_key)
destroy_data->dtor_key(key, destroy_data->data);
if (destroy_data->dtor_value)
destroy_data->dtor_value(value, destroy_data->data);
return CBS_CONT;
}
void
dict_destroy(struct dict *dict,
void (*dtor_key)(void *tgt, void *data),
void (*dtor_value)(void *tgt, void *data),
void *data)
{
/* Some slots are unused (the corresponding keys and values
* are uninitialized), so we can't call dtors for them.
* Iterate DICT instead. */
if (dtor_key != NULL || dtor_value != NULL) {
struct destroy_data destroy_data = {
dtor_key, dtor_value, data
};
dict_each(dict, NULL, destroy_cb, &destroy_data);
}
vect_destroy(&dict->keys, NULL, NULL);
vect_destroy(&dict->values, NULL, NULL);
vect_destroy(&dict->status, NULL, NULL);
}
static size_t
default_secondary_hash(size_t pos)
{
return pos % 97 + 1;
}
static size_t
small_secondary_hash(size_t pos)
{
return 1;
}
static inline size_t
n(struct dict *dict)
{
return vect_size(&dict->keys);
}
static inline size_t (*
hash2(struct dict *dict))(size_t)
{
if (dict->hash2 != NULL)
return dict->hash2;
else if (n(dict) < 100)
return small_secondary_hash;
else
return default_secondary_hash;
}
static void *
getkey(struct dict *dict, size_t pos)
{
return ((unsigned char *)dict->keys.data)
+ dict->keys.elt_size * pos;
}
static void *
getvalue(struct dict *dict, size_t pos)
{
return ((unsigned char *)dict->values.data)
+ dict->values.elt_size * pos;
}
static size_t
find_slot(struct dict *dict, const void *key,
int *foundp, int *should_rehash, size_t *pi)
{
assert(n(dict) > 0);
size_t pos = dict->hash1(key) % n(dict);
size_t pos0 = -1;
size_t d = hash2(dict)(pos);
size_t i = 0;
*foundp = 0;
/* We skip over any taken or erased slots. But we remember
* the first erased that we find, and if we don't find the key
* later, we return that position. */
for (; bitp(dict, pos)->taken || bitp(dict, pos)->erased;
pos = (pos + d) % n(dict)) {
if (pos0 == (size_t)-1 && bitp(dict, pos)->erased)
pos0 = pos;
/* If there is a loop, but we've seen an erased
* element, take that one. Otherwise give up. */
if (++i > dict->size) {
if (pos0 != (size_t)-1)
break;
return (size_t)-1;
}
if (bitp(dict, pos)->taken
&& dict->eq(getkey(dict, pos), key)) {
*foundp = 1;
break;
}
}
if (!*foundp && pos0 != (size_t)-1)
pos = pos0;
/* If the hash table degraded into a linked list, request a
* rehash. */
if (should_rehash != NULL)
*should_rehash = i > 10 && i > n(dict) / 10;
if (pi != NULL)
*pi = i;
return pos;
}
static enum callback_status
rehash_move(void *key, void *value, void *data)
{
if (dict_insert(data, key, value) < 0)
return CBS_STOP;
else
return CBS_CONT;
}
static int
rehash(struct dict *dict, size_t nn)
{
assert(nn != n(dict));
int ret = -1;
struct dict tmp;
dict_init(&tmp, dict->keys.elt_size, dict->values.elt_size,
dict->hash1, dict->eq, dict->hash2);
/* To honor all invariants (so that we can safely call
* dict_destroy), we first make a request to _reserve_ enough
* room in all vectors. This has no observable effect on
* contents of vectors. */
if (vect_reserve(&tmp.keys, nn) < 0
|| vect_reserve(&tmp.values, nn) < 0
|| vect_reserve(&tmp.status, nn) < 0)
goto done;
/* Now that we know that there is enough size in vectors, we
* simply bump the size. */
tmp.keys.size = nn;
tmp.values.size = nn;
size_t old_size = tmp.status.size;
tmp.status.size = nn;
memset(VECT_ELEMENT(&tmp.status, struct status_bits, old_size),
0, (tmp.status.size - old_size) * tmp.status.elt_size);
/* At this point, TMP is once more an empty dictionary with NN
* slots. Now move stuff from DICT to TMP. */
if (dict_each(dict, NULL, rehash_move, &tmp) != NULL)
goto done;
/* And now swap contents of DICT and TMP, and we are done. */
{
struct dict tmp2 = *dict;
*dict = tmp;
tmp = tmp2;
}
ret = 0;
done:
/* We only want to release the containers, not the actual data
* that they hold, so it's fine if we don't pass any dtor. */
dict_destroy(&tmp, NULL, NULL, NULL);
return ret;
}
static const size_t primes[] = {
13, 31, 61, 127, 251, 509, 1021, 2039, 4093,
8191, 16381, 32749, 65521, 130981, 0
};
static size_t
larger_size(size_t current)
{
if (current == 0)
return primes[0];
if (current < primes[sizeof(primes)/sizeof(*primes) - 2]) {
size_t i;
for (i = 0; primes[i] != 0; ++i)
if (primes[i] > current)
return primes[i];
abort();
}
/* We ran out of primes, so invent a new one. The following
* gives primes until about 17M elements (and then some more
* later). */
return 2 * current + 6585;
}
static size_t
smaller_size(size_t current)
{
if (current <= primes[0])
return primes[0];
if (current <= primes[sizeof(primes)/sizeof(*primes) - 2]) {
size_t i;
size_t prev = 0;
for (i = 0; primes[i] != 0; ++i) {
if (primes[i] >= current)
return prev;
prev = primes[i];
}
abort();
}
return (current - 6585) / 2;
}
int
dict_insert(struct dict *dict, void *key, void *value)
{
if (n(dict) == 0 || dict->size > 0.7 * n(dict))
rehash:
if (rehash(dict, larger_size(n(dict))) < 0)
return -1;
int found;
int should_rehash;
size_t slot_n = find_slot(dict, key, &found, &should_rehash, NULL);
if (slot_n == (size_t)-1)
return -1;
if (found)
return 1;
assert(!bitp(dict, slot_n)->taken);
/* If rehash was requested, do that, and retry. But just live
* with it for apparently sparse tables. No resizing can fix
* a rubbish hash. */
if (should_rehash && dict->size > 0.3 * n(dict))
goto rehash;
memmove(getkey(dict, slot_n), key, dict->keys.elt_size);
memmove(getvalue(dict, slot_n), value, dict->values.elt_size);
bitp(dict, slot_n)->taken = 1;
bitp(dict, slot_n)->erased = 0;
++dict->size;
return 0;
}
void *
dict_find(struct dict *dict, const void *key)
{
if (dict->size == 0)
return NULL;
assert(n(dict) > 0);
int found;
size_t slot_n = find_slot(dict, key, &found, NULL, NULL);
if (found)
return getvalue(dict, slot_n);
else
return NULL;
}
int
dict_erase(struct dict *dict, const void *key,
void (*dtor_key)(void *tgt, void *data),
void (*dtor_value)(void *tgt, void *data),
void *data)
{
int found;
size_t i;
size_t slot_n = find_slot(dict, key, &found, NULL, &i);
if (!found)
return -1;
if (dtor_key != NULL)
dtor_key(getkey(dict, slot_n), data);
if (dtor_value != NULL)
dtor_value(getvalue(dict, slot_n), data);
bitp(dict, slot_n)->taken = 0;
bitp(dict, slot_n)->erased = 1;
--dict->size;
if (dict->size < 0.3 * n(dict)) {
size_t smaller = smaller_size(n(dict));
if (smaller != n(dict))
/* Don't mind if it fails when shrinking. */
rehash(dict, smaller);
}
return 0;
}
void *
dict_each(struct dict *dict, void *start_after,
enum callback_status (*cb)(void *, void *, void *), void *data)
{
size_t i;
if (start_after != NULL)
i = ((start_after - dict->keys.data) / dict->keys.elt_size) + 1;
else
i = 0;
for (; i < dict->keys.size; ++i)
if (bitp(dict, i)->taken && !bitp(dict, i)->erased) {
void *key = getkey(dict, i);
if (cb(key, getvalue(dict, i), data) != CBS_CONT)
return key;
}
return NULL;
}
size_t
dict_hash_int(const int *key)
{
return (size_t)(*key * 2654435761U);
}
int
dict_eq_int(const int *key1, const int *key2)
{
return *key1 == *key2;
}
size_t
dict_hash_string(const char **key)
{
size_t h = 5381;
const char *str = *key;
while (*str != 0)
h = h * 33 ^ *str++;
return h;
}
int
dict_eq_string(const char **key1, const char **key2)
{
return strcmp(*key1, *key2) == 0;
}
void
dict_dtor_string(const char **key, void *data)
{
free((char *)*key);
}
int
dict_clone_string(const char **tgt, const char **src, void *data)
{
*tgt = strdup(*src);
return *tgt != NULL ? 0 : -1;
}
#ifdef TEST
static enum callback_status
dump(int *key, int *value, void *data)
{
char *seen = data;
assert(seen[*key] == 0);
seen[*key] = 1;
assert(*value == *key * 2 + 1);
return CBS_STOP;
}
static size_t
dict_hash_int_silly(const int *key)
{
return *key % 10;
}
static void
verify(struct dict *di, size_t len, char *seen)
{
size_t ct = 0;
int *it;
for (it = NULL; (it = DICT_EACH(di, int, int, it, dump, seen)) != NULL;)
ct++;
assert(ct == len);
memset(seen, 0, len);
}
static enum callback_status
fill_keys(int *key, int *value, void *data)
{
int *array = data;
array[++array[0]] = *key;
return CBS_CONT;
}
static void
test1(void)
{
struct dict di;
DICT_INIT(&di, int, int, dict_hash_int, dict_eq_int, NULL);
char seen[100000] = {};
size_t i;
for (i = 0; i < sizeof(seen); ++i) {
int key = i;
int value = 2 * i + 1;
DICT_INSERT(&di, &key, &value);
int *valp = DICT_FIND_REF(&di, &key, int);
assert(valp != NULL);
assert(*valp == value);
assert(dict_size(&di) == i + 1);
}
verify(&di, sizeof(seen), seen);
struct dict d2;
DICT_CLONE(&d2, &di, int, int, NULL, NULL, NULL, NULL, NULL);
DICT_DESTROY(&di, int, int, NULL, NULL, NULL);
verify(&d2, sizeof(seen), seen);
/* Now we try to gradually erase all elements. We can't erase
* inside a DICT_EACH call, so copy first keys to a separate
* memory area first. */
int keys[d2.size + 1];
size_t ct = 0;
keys[0] = 0;
DICT_EACH(&d2, int, int, NULL, fill_keys, keys);
for (i = 0; i < (size_t)keys[0]; ++i) {
assert(DICT_ERASE(&d2, &keys[i + 1], int,
NULL, NULL, NULL) == 0);
++ct;
}
assert(ct == sizeof(seen));
DICT_DESTROY(&d2, int, int, NULL, NULL, NULL);
}
static void
test_erase(void)
{
int i;
/* To test erase, we need a relatively bad hash function, so
* that there are some overlapping chains in the table. */
struct dict d2;
DICT_INIT(&d2, int, int, dict_hash_int_silly, dict_eq_int, NULL);
const int limit = 500;
for (i = 0; i < limit; ++i) {
int key = 2 * i + 1;
int value = 2 * key + 1;
DICT_INSERT(&d2, &key, &value);
}
/* Now we try to delete each of the keys, and verify that none
* of the chains was broken. */
for (i = 0; i < limit; ++i) {
struct dict copy;
DICT_CLONE(©, &d2, int, int, NULL, NULL, NULL, NULL, NULL);
int key = 2 * i + 1;
DICT_ERASE(©, &key, int, NULL, NULL, NULL);
assert(dict_size(©) == dict_size(&d2) - 1);
int j;
for (j = 0; j < limit; ++j) {
key = 2 * j + 1;
int *valp = DICT_FIND_REF(©, &key, int);
if (i != j) {
assert(valp != NULL);
assert(*valp == 2 * key + 1);
} else {
assert(valp == NULL);
}
}
DICT_DESTROY(©, int, int, NULL, NULL, NULL);
}
DICT_DESTROY(&d2, int, int, NULL, NULL, NULL);
}
int main(int argc, char *argv[])
{
test1();
test_erase();
return 0;
}
#endif