-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadaptive_predictor.py
117 lines (90 loc) · 3.59 KB
/
adaptive_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
from os.path import join as pjoin
import numpy as np
from pdb import set_trace
import math
import scipy
import matplotlib.pyplot as plt
import random
import copy
# from neural_network_regression import RegressionNeuralNetwork
from utils import eval_activation_func, eval_activation_func_gradient, eval_loss_func, unflatten_from_vector
import warnings
warnings.filterwarnings('ignore')
np.random.seed(0)
random.seed(72)
class NeuralNetwork:
def __init__(self):
pass
class Perceptron(NeuralNetwork):
def __init__(self, in_dim, out_dim, activation_func="linear", learning_rate=0.03):
self.in_dim = in_dim
self.out_dim = out_dim
self.activation_func = activation_func
self.learning_rate = learning_rate
# self.weight = np.random.normal(size=(out_dim, in_dim))
# self.bias = np.random.normal(size=(out_dim))
self.weight = np.zeros((out_dim, in_dim))
self.bias = np.zeros((out_dim))
self.weight_grad = np.zeros((out_dim, in_dim))
self.bias_grad = np.zeros((out_dim))
def eval(self, x_in):
out_mat_1 = np.dot(self.weight, x_in)
out_mat = out_mat_1.squeeze() + self.bias.squeeze()
out = eval_activation_func(out_mat, self.activation_func)
return out
def train(self, X_train, y_train, n_epoch):
print("Begin training")
n_inst = X_train.shape[0]
loss_list = []
for epoch_idx in range(1, n_epoch+1):
# Train
loss = 0
random_idx_list = [idx for idx in range(n_inst)]
random.shuffle(random_idx_list)
for inst_idx in range(n_inst):
x_inst = X_train[random_idx_list[inst_idx], :]
y_inst = y_train[random_idx_list[inst_idx]]
if np.size(y_inst) == 1:
y_inst = y_inst[:, np.newaxis]
# Forward pass
out = self.eval(x_inst)
err = y_inst - out
err = np.squeeze(err)
# Update
self.weight += 2*self.learning_rate*err*x_inst
self.bias += 2*self.learning_rate*err
# Calculate sum of square loss
loss += np.sum(err**2) # MSE
loss /= (1.0*n_inst)
loss_list.append(loss)
return loss_list
def get_experiment_data():
data_range = np.arange(-1, 1, 0.1)
n_point = np.size(data_range)
sin_data = np.sin(data_range*np.pi/5.0).tolist()
sin_data_delayed = copy.deepcopy(sin_data)
sin_data_delayed.insert(0, 0)
sin_data_delayed = sin_data_delayed[:-1]
X_train = np.zeros((n_point, 2))
X_train[:, 0] = np.array(sin_data)
X_train[:, 1] = np.array(sin_data_delayed)
y_train = np.array(sin_data)
y_train = y_train[:, np.newaxis]
return (X_train, y_train)
def run_experiment():
(X_train, y_train) = get_experiment_data()
(n_inst, n_features) = X_train.shape
net = Perceptron(n_features, 1, "linear", learning_rate=0.5) # From 0.82 the error diverges
n_epoch = 40
loss_list = net.train(X_train, y_train, n_epoch)
plt.plot(range(1, len(loss_list)+1), loss_list, color="blue", label="Sum of square error")
plt.legend()
plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
plt.xlabel("Time step")
plt.title("Adaptive predictor experiment")
plt.show()
def main():
run_experiment()
if __name__ == "__main__":
main()