-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiterate.py
316 lines (256 loc) · 11.1 KB
/
iterate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from dataset import JSONLDataset, TabularDataset, PickleDataset
import models.openai as openai
from util import parse_example, parse_tsv_example, parse_qaner_example, score_sets
import numpy as np
import time
from dotenv import load_dotenv
from prompt import PromptGenerator
import argparse
import random
from tqdm.auto import tqdm
import os, pdb
import json
import shutil
import logging
from datetime import datetime
import signal
import sys
logger = logging.getLogger('main')
running = True
randomize_labels = False
def parse_args():
parser = argparse.ArgumentParser(
prog='promptbench',
description='Prompt benchmarking utility'
)
parser.add_argument('-l', '--lang', type=str)
parser.add_argument('-d', '--dataset', type=str)
parser.add_argument('-p', '--prompt', type=str, default='ner')
parser.add_argument('-td', '--target-dataset', type=str)
parser.add_argument('-sd', '--source-dataset', type=str)
#parser.add_argument('-l', '--llama-url', type=str, help="LLaMa API URL")
parser.add_argument('-m', '--model', type=str, help="model", default='gpt-4')
parser.add_argument('-tr', '--target-retrieve', type=int, help="no. examples to retrieve from target", default=0)
parser.add_argument('-sr', '--source-retrieve', type=int, help="no. examples to retrieve from source", default=8)
parser.add_argument('-y', '--yes', action="store_true", help="Say yes to any conditionals")
parser.add_argument('-r', '--result-dir', type=str, default=f"results/run_{datetime.now().strftime('%Y%m%dT%H%M%S')}")
parser.add_argument('-rl', '--randomize-labels', action="store_true", help="randomize labels (for ablation)")
parser.add_argument('--slow', action="store_true", help="slow down API calls")
parser.add_argument('-cf', '--content-filter', action="store_true", help="ignore content filter (save all egs)")
parser.add_argument('-tog', '--together', action="store_true", help="LLaMa 70B (for Together AI)")
parser.add_argument('-ssim', '--source-sim', type=str, help="Source similarity matrix")
parser.add_argument('-tsim', '--target-sim', type=str, help="Target similarity matrix")
parser.add_argument('-s', '--split-start', type=int, default=0)
parser.add_argument('-e', '--split-end', type=int, default=100000)
parser.add_argument('-i', '--interm', type=int, default=10)
parser.add_argument('-t', '--temperature', type=float, default=0) # was 0.5 earlier!
return parser.parse_args()
def create_save_dir(save_dir, overwrite):
if os.path.exists(save_dir):
if overwrite:
print('Output folder already exists, overwriting')
shutil.rmtree(save_dir)
else:
print('Overwrite preexisting output folder? (y/N): ', end='')
ch = input()
if (ch == 'y'):
shutil.rmtree(save_dir)
else:
save_dir += '_1'
os.makedirs(save_dir)
return save_dir
def setup_logger(save_dir):
logging.basicConfig(
filename=os.path.join(save_dir, 'logfile.log'),
filemode='a',
format='[%(asctime)s.%(msecs)d](%(name)s:%(levelname)s) %(message)s',
datefmt='%H:%M:%S',
level=logging.INFO
)
def random_ner_label():
# labels = ['O', 'B-PER', 'I-PER', 'B-LOC', 'I-LOC', 'B-ORG', 'I-ORG', 'B-DATE', 'I-DATE']
labels = ['ADJ', 'ADP', 'ADV', 'AUX', 'CCONJ', 'DET', 'INTJ', 'NOUN', 'NUM', 'PART', 'PRON', 'PROPN', 'PUNCT', 'SCONJ', 'SYM', 'VERB', 'X']
return random.choice(labels)
def gold_tags_to_tsv_output(sentence):
temp = sentence.strip().split(' ')
temp = [w.rsplit('_', 1) for w in temp]
# randomize labels here for ablation
if randomize_labels:
temp = [(w[0], random_ner_label()) for w in temp]
return '\n'.join([f'{x[0]}\t{x[1]}' for x in temp])
def sentence_to_input(sentence):
temp = sentence.split(' ')
return "[" + ", ".join([f'"{a}"' for a in temp]) + "]"
def gold_tags_to_output(sentence):
temp = [a.rsplit('_', 1) for a in sentence.strip().split(' ')]
return "[" + ", ".join([f'(``{a[0]}", ``{a[1]}")' for a in temp]) + "]"
def construct_prompt(idx, example, tgt_ds, src_ds, tgt_sim_mat, src_sim_mat, pg,
prompt, n_from_tgt=0, n_from_src=8):
# retrieve demos
# pdb.set_trace()
logger.info(f'idx: {idx}')
demos = []
if n_from_src > 0:
ind = src_sim_mat[idx].argsort()[-n_from_src:]
logger.info(f'src egs: {ind}')
demos += [src_ds[i].copy() for i in ind]
if n_from_tgt > 0:
# will include itself, we don't want that
ind_tgt = tgt_sim_mat[idx].argsort()[-n_from_tgt-1:-1]
logger.info(f'tgt egs: {ind_tgt}')
if idx in ind_tgt:
print(f'ERROR: idx in ind_tgt. This should not happen.')
logger.warn(f'ERROR: idx in ind_tgt. This should not happen.')
# assert idx not in ind_tgt, "Error: picking own index"
tgt_demos = [tgt_ds[i].copy() for i in ind_tgt]
if 'pred_labels' in tgt_demos[0]:
# convert silver tags to gold tag format
for d in tgt_demos:
d['output'] = ' '.join([f'{a}_{b}' for a,b in zip(d['input'].strip().split(' '), d['pred_labels'])])
else:
logger.warning("WARNING: taking gold labels. This should only happen if intended.")
demos += tgt_demos
examples = [d['output'] for d in demos]
for d in demos:
d['output'] = gold_tags_to_tsv_output(d['output'])
if prompt.startswith('qaner'):
prompt_files = ['qaner_zs_loc', 'qaner_zs_per', 'qaner_zs_org', 'qaner_zs_date']
prompts = []
for prompt_file in prompt_files:
prompt = pg.create_prompt(prompt_file, demos=demos, sentence=example['input'])
prompts.append(prompt)
return prompts
prompt = pg.create_prompt(prompt, demos=demos, sentence=example['input'])
return (prompt, examples)
def get_response_from_gpt(example, task, prompt, model):
# confidence scores via sampling multiple times...
# not now.
if isinstance(prompt, list):
completions = []
for p in prompt:
completions.append(model.complete(p))
model.cleanup()
model.cleanup()
response = parse_qaner_example(task, example, completions)
return response
completion = model.complete(prompt)
if completion is None or completion == "":
logger.error(f"Did not obtain response for input {example['input']}, setting everything to default lbl")
model.cleanup()
default_lbl = 'O'
if task.startswith('pos'):
default_lbl = 'X'
return {
'gold_labels': [a.split('_')[1] for a in example['output'].strip().split(' ')],
'pred_labels': [default_lbl for a in example['input'].strip().split(' ')]
}, completion
logger.info(f'Obtained completion: {completion}')
response = parse_tsv_example(task, example, completion)
model.cleanup()
return response, completion
def save_data(data, skip_ind, save_dir):
with open(os.path.join(save_dir, f'responses.json'), 'w+') as outfile:
for response in data['responses']:
outfile.write(f"{json.dumps(response, ensure_ascii=False)}\n")
with open(os.path.join(save_dir, f'accuracies.csv'), 'w+') as accfile:
accfile.write(f"precision,recall,f1,total\n")
accfile.write(f"{data['precision']},{data['recall']},{data['f1']},{data['total']}\n")
json.dump(skip_ind, open(os.path.join(save_dir, f'skip_idxs.json'), 'w'), ensure_ascii=False)
def main():
args = parse_args()
global randomize_labels
randomize_labels = args.randomize_labels
load_dotenv(os.path.join(os.path.dirname(__file__), '../.env'))
openai.setup_api_key(os.environ.get('OPENAI_API_KEY'))
save_dir = create_save_dir(args.result_dir, args.yes)
setup_logger(save_dir)
logger.info("Running with args:")
logger.info(args)
pg = PromptGenerator('prompts')
model_args = openai.ChatGPT.DEFAULT_ARGS
model_args['engine'] = args.model
model_args['request_timeout'] = 200
if args.model == 'gpt-35-turbo':
# this has ctx length = 4096!
model_args['max_tokens'] = 256
model = openai.ChatGPT(model_args)
ssim = np.load(args.source_sim)
tsim = None
if args.target_sim:
tsim = np.load(args.target_sim)
model.default_args['temperature'] = args.temperature
if args.dataset.endswith('.pkl'):
ds = PickleDataset(args.dataset)[args.split_start:args.split_end]
elif args.dataset.endswith('.tsv'):
ds = TabularDataset(args.dataset, delimiter='\t')[args.split_start:args.split_end]
else:
logger.error('Dataset type not recognized. Continuing.')
exit()
sds = TabularDataset(args.source_dataset, delimiter='\t')
print(len(sds))
tds = None
if args.target_dataset:
if args.target_dataset.endswith('.json'):
tds = JSONLDataset(args.target_dataset)
elif args.target_dataset.endswith('.tsv'):
tds = TabularDataset(args.target_dataset, delimiter='\t')
else:
logger.error('Dataset type not recognized. Continuing.')
exit()
interm = args.interm
data = {
'total': 0,
'responses': []
}
data_kv_store = {}
# pdb.set_trace()
bar = tqdm(ds)
skip_ind = []
for i, example in enumerate(bar):
if not running:
break
if interm==0:
score_sets(data)
save_data(data, skip_ind, save_dir)
interm=args.interm
bar.set_postfix(prec=f"{data['precision']*100:.2f}",
recall=f"{data['recall']*100:.2f}",
f1=f"{data['f1']*100:.2f}")
# pdb.set_trace()
(prompt, examples) = construct_prompt(i, example, tds, sds, tsim, ssim, pg, args.prompt,
n_from_tgt=args.target_retrieve, n_from_src=args.source_retrieve)
# pdb.set_trace()
response, completion = get_response_from_gpt(example, args.prompt, prompt, model)
# sleep for 30s because rate limit at api
if args.slow:
time.sleep(15)
if args.content_filter:
if completion != "":
data['responses'].append({
**example,
**response,
'examples': examples
})
data['total'] += 1
else:
skip_ind.append(i)
else:
data['responses'].append({
**example,
**response,
'examples': examples
})
data['total'] += 1
# put response in K-V store
data_kv_store[example['input']] = [response]
interm-=1
score_sets(data)
save_data(data, skip_ind, save_dir)
bar.set_postfix(prec=f"{data['precision']*100:.2f}",
recall=f"{data['recall']*100:.2f}",
f1=f"{data['f1']*100:.2f}")
print(f"{data['total']} examples run")
# with open(save_dir+"/"+args.lang+"_skip_ind.json", "w") as f_w:
# json.dump(skip_ind, f_w)
if __name__ == "__main__":
main()