An ugly number is a positive integer whose prime factors are limited to 2
, 3
, and 5
.
Given an integer n
, return the nth
ugly number.
Example 1:
Input: n = 10 Output: 12 Explanation: [1, 2, 3, 4, 5, 6, 8, 9, 10, 12] is the sequence of the first 10 ugly numbers.
Example 2:
Input: n = 1 Output: 1 Explanation: 1 has no prime factors, therefore all of its prime factors are limited to 2, 3, and 5.
Constraints:
1 <= n <= 1690
class Solution:
def nthUglyNumber(self, n: int) -> int:
dp = [1] * n
p2 = p3 = p5 = 0
for i in range(1, n):
next2, next3, next5 = dp[p2] * 2, dp[p3] * 3, dp[p5] * 5
dp[i] = min(next2, next3, next5)
if dp[i] == next2:
p2 += 1
if dp[i] == next3:
p3 += 1
if dp[i] == next5:
p5 += 1
return dp[-1]
class Solution {
public int nthUglyNumber(int n) {
int[] dp = new int[n];
dp[0] = 1;
int p2 = 0, p3 = 0, p5 = 0;
for (int i = 1; i < n; ++i) {
int next2 = dp[p2] * 2, next3 = dp[p3] * 3, next5 = dp[p5] * 5;
dp[i] = Math.min(next2, Math.min(next3, next5));
if (dp[i] == next2) ++p2;
if (dp[i] == next3) ++p3;
if (dp[i] == next5) ++p5;
}
return dp[n - 1];
}
}
class Solution {
public:
int nthUglyNumber(int n) {
vector<int> dp(n);
dp[0] = 1;
int p2 = 0, p3 = 0, p5 = 0;
for (int i = 1; i < n; ++i) {
int next2 = dp[p2] * 2, next3 = dp[p3] * 3, next5 = dp[p5] * 5;
dp[i] = min(next2, min(next3, next5));
if (dp[i] == next2) ++p2;
if (dp[i] == next3) ++p3;
if (dp[i] == next5) ++p5;
}
return dp[n - 1];
}
};
/**
* @param {number} n
* @return {number}
*/
var nthUglyNumber = function (n) {
let dp = [1];
let p2 = 0,
p3 = 0,
p5 = 0;
for (let i = 1; i < n; ++i) {
const next2 = dp[p2] * 2,
next3 = dp[p3] * 3,
next5 = dp[p5] * 5;
dp[i] = Math.min(next2, Math.min(next3, next5));
if (dp[i] == next2) ++p2;
if (dp[i] == next3) ++p3;
if (dp[i] == next5) ++p5;
dp.push(dp[i]);
}
return dp[n - 1];
};
func nthUglyNumber(n int) int {
dp := make([]int, n)
dp[0] = 1
p2, p3, p5 := 0, 0, 0
for i := 1; i < n; i++ {
next2, next3, next5 := dp[p2]*2, dp[p3]*3, dp[p5]*5
dp[i] = min(next2, min(next3, next5))
if dp[i] == next2 {
p2++
}
if dp[i] == next3 {
p3++
}
if dp[i] == next5 {
p5++
}
}
return dp[n-1]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
public class Solution {
public int NthUglyNumber(int n) {
int[] dp = new int[n];
dp[0] = 1;
int p2 = 0, p3 = 0, p5 = 0;
for (int i = 1; i < n; ++i)
{
int next2 = dp[p2] * 2, next3 = dp[p3] * 3, next5 = dp[p5] * 5;
dp[i] = Math.Min(next2, Math.Min(next3, next5));
if (dp[i] == next2)
{
++p2;
}
if (dp[i] == next3)
{
++p3;
}
if (dp[i] == next5)
{
++p5;
}
}
return dp[n - 1];
}
}