-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
168 lines (140 loc) · 6.23 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from scipy.stats import pearsonr
import numpy as np
def confusion_matrix(rater_a, rater_b, min_rating=None, max_rating=None):
assert(len(rater_a) == len(rater_b))
if min_rating is None:
min_rating = min(rater_a + rater_b)
if max_rating is None:
max_rating = max(rater_a + rater_b)
num_ratings = int(max_rating - min_rating + 1)
conf_mat = [[0 for i in range(num_ratings)]
for j in range(num_ratings)]
for a, b in zip(rater_a, rater_b):
conf_mat[a - min_rating][b - min_rating] += 1
return conf_mat
def histogram(ratings, min_rating=None, max_rating=None):
if min_rating is None:
min_rating = min(ratings)
if max_rating is None:
max_rating = max(ratings)
num_ratings = int(max_rating - min_rating + 1)
hist_ratings = [0 for x in range(num_ratings)]
for r in ratings:
hist_ratings[r - min_rating] += 1
return hist_ratings
def quadratic_weighted_kappa(rater_a, rater_b, min_rating=None, max_rating=None):
rater_a = np.array(rater_a, dtype=int)
rater_b = np.array(rater_b, dtype=int)
assert(len(rater_a) == len(rater_b))
if min_rating is None:
min_rating = min(min(rater_a), min(rater_b))
if max_rating is None:
max_rating = max(max(rater_a), max(rater_b))
conf_mat = confusion_matrix(rater_a, rater_b,
min_rating, max_rating)
num_ratings = len(conf_mat)
num_scored_items = float(len(rater_a))
hist_rater_a = histogram(rater_a, min_rating, max_rating)
hist_rater_b = histogram(rater_b, min_rating, max_rating)
numerator = 0.0
denominator = 0.0
for i in range(num_ratings):
for j in range(num_ratings):
expected_count = (hist_rater_a[i] * hist_rater_b[j] / num_scored_items)
if num_ratings == 1:
num_ratings += 0.0000001
d = pow(i - j, 2.0) / pow(num_ratings - 1, 2.0)
numerator += d * conf_mat[i][j] / num_scored_items
denominator += d * expected_count / num_scored_items
if denominator <= 0.0000001:
denominator = 0.0000001
return 1.0 - numerator / denominator
def evaluation(true_label, pre_label, high_score=7.0, second_high_score=6.5, low_score=4.5, second_low_score=5.0):
assert len(pre_label) == len(true_label)
# 分差指标
res = [0, 0, 0, 0, 0]
for i in range(len(pre_label)):
if pre_label[i] is None:
pre_label[i] = 0
index = int(abs(pre_label[i] - true_label[i]) / 0.5)
if index <= 3:
res[index] += 1
else:
res[4] += 1
total_score = sum(res)
result = [float(item) / total_score for item in res]
result.append(result[0] + result[1])
result.append(result[0] + result[1] + result[2])
# pearson
result.append(pearsonr(true_label, pre_label)[0])
# kappa
result.append(quadratic_weighted_kappa(true_label, pre_label))
# high score evaluation result
high_score_recall, high_score_precision, f1 = evaluation_high_score(true_label, pre_label, high_score)
result.append(high_score_recall)
result.append(high_score_precision)
result.append(f1)
# high score evaluation result
second_high_score_recall, second_high_score_precision, f1 = evaluation_high_score(true_label, pre_label,
second_high_score)
result.append(second_high_score_recall)
result.append(second_high_score_precision)
result.append(f1)
# low score evaluation result
second_low_score_recall, second_low_score_precision, f1 = evaluation_low_score(true_label, pre_label, second_low_score)
result.append(second_low_score_recall)
result.append(second_low_score_precision)
result.append(f1)
# low score evaluation result
low_score_recall, low_score_precision, f1 = evaluation_low_score(true_label, pre_label, low_score)
result.append(low_score_recall)
result.append(low_score_precision)
result.append(f1)
result = [str(round(item, 3)) for item in result]
# result_str = '|' + '|'.join(result)
return result
def f1(precision, recall, weight=1):
if precision == 0 or recall == 0:
return 0
return (weight * weight + 1) * precision * recall / (weight * weight * precision + recall)
def evaluation_high_score(true_score, pre_score, high_score):
assert len(pre_score) == len(true_score)
true_high_score_num = 0.0
pred_high_score_num = 0.0
both_high_score_num = 0.0
qualified_num = 0.0
smooth_value = 0.0000001
for i in range(len(pre_score)):
if true_score[i] >= high_score:
true_high_score_num += 1.0
if pre_score[i] >= high_score:
pred_high_score_num += 1.0
if pre_score[i] >= high_score and true_score[i] >= high_score:
both_high_score_num += 1.0
if pre_score[i] >= high_score and abs(pre_score[i] - true_score[i]) <= 0.5:
qualified_num += 1.0
high_score_recall = both_high_score_num / (true_high_score_num + smooth_value)
high_score_precision = qualified_num / (pred_high_score_num + smooth_value)
high_score_f1 = f1(high_score_precision, high_score_recall)
# print(true_high_score_num, pred_high_score_num, both_high_score_num, qualified_num)
return high_score_recall, high_score_precision, high_score_f1
def evaluation_low_score(true_score, pre_score, low_score):
assert len(pre_score) == len(true_score)
true_low_score_num = 0.0
pred_low_score_num = 0.0
both_low_score_num = 0.0
qualified_num = 0.0
smooth_value = 0.0000001
for i in range(len(pre_score)):
if true_score[i] <= low_score:
true_low_score_num += 1.0
if pre_score[i] <= low_score:
pred_low_score_num += 1.0
if pre_score[i] <= low_score and true_score[i] <= low_score:
both_low_score_num += 1.0
if pre_score[i] <= low_score and abs(pre_score[i] - true_score[i]) <= 0.5:
qualified_num += 1.0
low_score_recall = both_low_score_num / (true_low_score_num + smooth_value)
low_score_precision = qualified_num / (pred_low_score_num + smooth_value)
low_score_f1 = f1(low_score_precision, low_score_recall)
return low_score_recall, low_score_precision, low_score_f1