forked from sw32-seo/neuralODE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn.py
152 lines (122 loc) · 4.71 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import jax
from typing import Any, Callable, Sequence, Optional
from jax import lax, random, numpy as jnp
import flax
from flax.training import train_state
from flax.core import freeze, unfreeze
from flax import linen as nn
from flax import serialization
import optax
import tensorflow_datasets as tfds
import numpy as np
# Define model
class CNN(nn.Module):
"""A simple CNN model."""
@nn.compact
def __call__(self, inputs):
x = inputs
x = nn.Conv(features=32, kernel_size=(3, 3))(x)
x = nn.relu(x)
x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
x = nn.Conv(features=64, kernel_size=(3, 3))(x)
x = nn.relu(x)
x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
x = x.reshape((x.shape[0], -1)) # flatten
x = nn.Dense(features=256)(x)
x = nn.relu(x)
x = nn.Dense(features=10)(x)
x = nn.log_softmax(x)
return x
# Define loss
def cross_entropy_loss(*, logits, labels):
one_hot_labels = jax.nn.one_hot(labels, num_classes=10)
return -jnp.mean(jnp.sum(one_hot_labels * logits, axis=-1))
# Metric computation
def compute_metrics(*, logits, labels):
loss = cross_entropy_loss(logits=logits, labels=labels)
accuracy = jnp.mean(jnp.argmax(logits, -1) == labels)
metrics = {
'loss': loss,
'accuracy': accuracy,
}
return metrics
def get_datasets():
"""Load MNIST train and test datasets into memory."""
ds_builder = tfds.builder('mnist')
ds_builder.download_and_prepare()
train_ds = tfds.as_numpy(ds_builder.as_dataset(split='train', batch_size=-1))
test_ds = tfds.as_numpy(ds_builder.as_dataset(split='test', batch_size=-1))
train_ds['image'] = jnp.float32(train_ds['image']) / 255.
test_ds['image'] = jnp.float32(test_ds['image']) / 255.
return train_ds, test_ds
def create_train_state(rng, learning_rate):
"""Creates initial 'TrainState'."""
cnn = CNN()
params = cnn.init(rng, jnp.ones([1, 28, 28, 1]))['params']
tx = optax.adam(learning_rate)
return train_state.TrainState.create(
apply_fn=cnn.apply, params=params, tx=tx
)
# Training step
@jax.jit
def train_step(state, batch):
"""Train for a single step."""
def loss_fn(params):
logits = CNN().apply({'params': params}, batch['image'])
loss = cross_entropy_loss(logits=logits, labels=batch['label'])
return loss, logits
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
(_, logits), grads = grad_fn(state.params)
state = state.apply_gradients(grads=grads)
metrics = compute_metrics(logits=logits, labels=batch['label'])
return state, metrics
# Evaluation step
@jax.jit
def eval_step(params, batch):
logits = CNN().apply({'params': params}, batch['image'])
return compute_metrics(logits=logits, labels=batch['label'])
# Train function
def train_epoch(state, train_ds, batch_size, epoch, rng):
"""Train for a single epoch"""
train_ds_size = len(train_ds['image'])
steps_per_epoch = train_ds_size // batch_size
perms = jax.random.permutation(rng, len(train_ds['image']))
perms = perms[:steps_per_epoch * batch_size] # skip incomplete batch
perms = perms.reshape((steps_per_epoch, batch_size))
batch_metrics = []
for perm in perms:
batch = {k: v[perm, ...] for k, v in train_ds.items()}
state, metrics = train_step(state, batch)
batch_metrics.append(metrics)
# compute mean of metrics across each batch in epoch.
batch_metrics_np = jax.device_get(batch_metrics)
epoch_metrics_np = {
k: np.mean([metrics[k] for metrics in batch_metrics_np])
for k in batch_metrics_np[0]
}
print('train epoch: %d, loss: %.4f, accuracy: %.2f' % (
epoch, epoch_metrics_np['loss'], epoch_metrics_np['accuracy'] * 100
))
return state
# Eval function
def eval_model(params, test_ds):
metrics = eval_step(params, test_ds)
metrics = jax.device_get(metrics)
summary = jax.tree_map(lambda x: x.item(), metrics)
return summary['loss'], summary['accuracy']
if __name__ == '__main__':
train_ds, test_ds = get_datasets()
rng = jax.random.PRNGKey(0)
rng, init_rng = jax.random.split(rng)
learning_rate = 0.0001
state = create_train_state(init_rng, learning_rate)
del init_rng # Must not be used anymore.
num_epochs = 10
batch_size = 32
for epoch in range(1, num_epochs + 1):
rng, input_rng = jax.random.split(rng)
state = train_epoch(state, train_ds, batch_size, epoch, input_rng)
test_loss, test_accuracy = eval_model(state.params, test_ds)
print(' test epoch: %d, loss: %.2f, accuracy: %.2f' % (
epoch, test_loss, test_accuracy * 100
))