-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstl_function.h
584 lines (479 loc) · 16.3 KB
/
stl_function.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#pragma once
namespace MiniSTL {
// 一元运算符
template <class Arg, class Result>
struct unary_function {
using argument_type = Arg;
using result_type = Result;
};
// 二元操作结构定义
template <class Arg1, class Arg2, class Result>
struct binary_function {
using first_argument_type = Arg1;
using second_argument_type = Arg2;
using result_type = Result;
};
// 以下是六个算数类仿函数
// plus,minus,multiplies,divides,modulus,negate
template <class T>
struct plus : public binary_function<T, T, T> {
T operator()(const T &x, const T &y) const { return x + y; }
};
template <class T>
struct minus : public binary_function<T, T, T> {
T operator()(const T &x, const T &y) const { return x - y; }
};
template <class T>
struct multiplies : public binary_function<T, T, T> {
T operator()(const T &x, const T &y) const { return x * y; }
};
template <class T>
struct divides : public binary_function<T, T, T> {
T operator()(const T &x, const T &y) const { return x / y; }
};
template <class T>
struct modulus : public binary_function<T, T, T> {
T operator()(const T &x, const T &y) const { return x % y; }
};
template <class T>
struct negate : public unary_function<T, T> {
T operator()(const T &x) const { return -x; }
};
//证同元素(并非标准STL所要求)
template <class T>
inline T identity_element(plus<T>) {
return T(0);
}
template <class T>
inline T identity_element(multiplies<T>) {
return T(1);
}
// 运算关系类仿函数
// equal_to,not_equal_to,greater,less,greater_equal,less_equal
template <class T>
struct equal_to : public binary_function<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x == y; }
};
template <class T>
struct not_equal_to : public binary_function<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x != y; }
};
template <class T>
struct greater : public binary_function<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x > y; }
};
template <class T>
struct less : public binary_function<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x < y; }
};
template <class T>
struct greater_equal : public binary_function<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x >= y; }
};
template <class T>
struct less_equal : public binary_function<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x <= y; }
};
// 逻辑运算类仿函数
// logical_and,logical_or,logical_not
template <class T>
struct logical_and : public binary_function<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x && y; }
};
template <class T>
struct logical_or : public binary_function<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x || y; }
};
template <class T>
struct logical_not : public unary_function<T, bool> {
bool operator()(const T &x) const { return !x; }
};
// 证同,选择,投射
// 只将参数原封不动地返回,之所以有这般设计是为了增加间接性
template <class T>
struct identity : public unary_function<T, T> {
const T& operator()(const T& x) const { return x; }
};
template <class Pair>
struct select1st : public unary_function<Pair, typename Pair::first_type> {
const typename Pair::first_type &operator()(const Pair &x) const {
return x.first;
}
};
template <class Pair>
struct select2nd : public unary_function<Pair, typename Pair::second_type> {
const typename Pair::second_type &operator()(const Pair &x) const {
return x.second;
}
};
template <class Arg1, class Arg2>
struct project1st : public binary_function<Arg1, Arg2, Arg1> {
Arg1 operator()(const Arg1 &x, const Arg2 &) const { return x; }
};
template <class Arg1, class Arg2>
struct Project2nd : public binary_function<Arg1, Arg2, Arg2> {
Arg2 operator()(const Arg1 &, const Arg2 &y) const { return y; }
};
// 以下为函数适配器
template <class Predicate>
class unary_negate
: public unary_function<typename Predicate::argument_type, bool> {
protected:
Predicate pred;
public:
explicit unary_negate(const Predicate &x) : pred(x) {}
bool operator()(const typename Predicate::argument_type &x) const {
return !pred(x);
}
};
template <class Predicate>
inline unary_negate<Predicate> not1(const Predicate &pred) {
return unary_negate<Predicate>(pred);
}
template <class Predicate>
class binary_negate
: public binary_function<typename Predicate::first_argument_type,
typename Predicate::second_argument_type, bool> {
protected:
Predicate pred;
public:
explicit binary_negate(const Predicate &x) : pred(x) {}
bool operator()(const typename Predicate::first_argument_type &x,
const typename Predicate::second_argument_type &y) const {
return !pred(x, y);
}
};
template <class _Predicate>
inline binary_negate<_Predicate> not2(const _Predicate &pred) {
return binary_negate<_Predicate>(pred);
}
template <class Operation>
class binder1st
: public unary_function<typename Operation::second_argument_type,
typename Operation::result_type> {
protected:
Operation op;
typename Operation::first_argument_type value;
public:
binder1st(const Operation &x,
const typename Operation::first_argument_type &y)
: op(x), value(y) {}
typename Operation::result_type operator()(
const typename Operation::second_argument_type &x) const {
return op(value, x); // 调用表达式,将value作为第一参数
}
};
template <class Operation, class T>
inline binder1st<Operation> bind1st(const Operation &op, const T &x) {
using Arg1_type = typename Operation::first_argument_type;
return binder1st<Operation>(op, static_cast<Arg1_type>(x));
}
template <class Operation>
class binder2nd : public unary_function<typename Operation::first_argument_type,
typename Operation::result_type> {
protected:
Operation op;
typename Operation::second_argument_type value;
public:
binder2nd(const Operation &x,
const typename Operation::second_argument_type &y)
: op(x), value(y) {}
typename Operation::result_type operator()(
const typename Operation::first_argument_type &x) const {
return op(x, value);
}
};
template <class Operation, class T>
inline binder2nd<Operation> bind2nd(const Operation &op, const T &x) {
using Arg2_type = typename Operation::second_argument_type;
return binder2nd<Operation>(op, Arg2_type(x));
}
// unary_compose and binary_compose(not in standard)
template <class Operation1, class Operation2>
class unary_compose : public unary_function<typename Operation2::argument_type,
typename Operation1::result_type> {
protected:
Operation1 op1;
Operation2 op2;
public:
unary_compose(const Operation1 &x, const Operation2 &y) : op1(x), op2(y) {}
typename Operation1::result_type operator()(
const typename Operation2::argument_type &x) const {
return op1(op2(x));
}
};
template <class Operation1, class Operation2>
inline unary_compose<Operation1, Operation2> compose1(const Operation1 &op1,
const Operation2 &op2) {
return unary_compose<Operation1, Operation2>(op1, op2);
}
template <class Operation1, class Operation2, class Operation3>
class binary_compose : public unary_function<typename Operation2::argument_type,
typename Operation1::result_type> {
protected:
Operation1 op1;
Operation2 op2;
Operation3 op3;
public:
binary_compose(const Operation1 &x, const Operation2 &y,
const Operation3 &z)
: op1(x), op2(y), op3(z) {}
typename Operation1::result_type operator()(
const typename Operation2::argument_type &x) const {
return op1(op2(x), op3(x));
}
};
template <class Operation1, class Operation2, class Operation3>
inline binary_compose<Operation1, Operation2, Operation3> compose2(
const Operation1 &op1, const Operation2 &op2, const Operation3 &op3) {
return binary_compose<Operation1, Operation2, Operation3>(op1, op2, op3);
}
template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result> {
protected:
Result (*ptr)(Arg);
public:
pointer_to_unary_function() {}
explicit pointer_to_unary_function(Result (*x)(Arg)) : ptr(x) {}
Result operator()(Arg x) const { return ptr(x); }
};
template <class Arg, class Result>
inline pointer_to_unary_function<Arg, Result> ptr_fun(Result (*x)(Arg)) {
return pointer_to_unary_function<Arg, Result>(x);
}
template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function<Arg1, Arg2, Result> {
protected:
Result (*ptr)(Arg1, Arg2);
public:
pointer_to_binary_function() {}
explicit pointer_to_binary_function(Result (*x)(Arg1, Arg2)) : ptr(x) {}
Result operator()(Arg1 x, Arg2 y) const { return ptr(x, y); }
};
template <class Arg1, class Arg2, class Result>
inline pointer_to_binary_function<Arg1, Arg2, Result> ptr_fun(
Result (*x)(Arg1, Arg2)) {
return pointer_to_binary_function<Arg1, Arg2, Result>(x);
}
template <class S, class T>
class mem_fun_t : public unary_function<T *, S> {
public:
explicit mem_fun_t(S (T::*pf)()) : f(pf) {}
S operator()(T *p) const { return (p->*f)(); }
private:
S (T::*f)();
};
template <class S, class T>
class const_mem_fun_t : public unary_function<const T *, S> {
public:
explicit const_mem_fun_t(S (T::*pf)() const) : f(pf) {}
S operator()(const T *p) const { return (p->*f)(); }
private:
S (T::*f)() const;
};
template <class S, class T>
class mem_fun_ref_t : public unary_function<T, S> {
public:
explicit mem_fun_ref_t(S (T::*pf)()) : f(pf) {}
S operator()(T &r) const { return (r.*f)(); }
private:
S (T::*f)();
};
template <class S, class T>
class const_mem_fun_ref_t : public unary_function<T, S> {
public:
explicit const_mem_fun_ref_t(S (T::*pf)() const) : f(pf) {}
S operator()(const T &r) const { return (r.*f)(); }
private:
S (T::*f)() const;
};
template <class S, class T, class Arg>
class mem_fun1_t : public binary_function<T *, Arg, S> {
public:
explicit mem_fun1_t(S (T::*pf)(Arg)) : f(pf) {}
S operator()(T *p, Arg x) const { return (p->*f)(x); }
private:
S (T::*f)(Arg);
};
template <class S, class T, class Arg>
class const_mem_fun1_t : public binary_function<const T *, Arg, S> {
public:
explicit const_mem_fun1_t(S (T::*pf)(Arg) const) : f(pf) {}
S operator()(const T *p, Arg x) const { return (p->*f)(x); }
private:
S (T::*f)(Arg) const;
};
template <class S, class T, class Arg>
class mem_fun1_ref_t : public binary_function<T, Arg, S> {
public:
explicit mem_fun1_ref_t(S (T::*pf)(Arg)) : f(pf) {}
S operator()(T &r, Arg x) const { return (r.*f)(x); }
private:
S (T::*f)(Arg);
};
template <class S, class T, class Arg>
class const_mem_fun1_ref_t : public binary_function<T, Arg, S> {
public:
explicit const_mem_fun1_ref_t(S (T::*pf)(Arg) const) : f(pf) {}
S operator()(const T &r, Arg x) const { return (r.*f)(x); }
private:
S (T::*f)(Arg) const;
};
template <class T>
class mem_fun_t<void, T> : public unary_function<T *, void> {
public:
explicit mem_fun_t(void (T::*pf)()) : f(pf) {}
void operator()(T *p) const { (p->*f)(); }
private:
void (T::*f)();
};
template <class T>
class const_mem_fun_t<void, T> : public unary_function<const T *, void> {
public:
explicit const_mem_fun_t(void (T::*pf)() const) : f(pf) {}
void operator()(const T *p) const { (p->*f)(); }
private:
void (T::*f)() const;
};
template <class T>
class mem_fun_ref_t<void, T> : public unary_function<T, void> {
public:
explicit mem_fun_ref_t(void (T::*pf)()) : f(pf) {}
void operator()(T &r) const { (r.*f)(); }
private:
void (T::*f)();
};
template <class T>
class const_mem_fun_ref_t<void, T> : public unary_function<T, void> {
public:
explicit const_mem_fun_ref_t(void (T::*pf)() const) : f(pf) {}
void operator()(const T &r) const { (r.*f)(); }
private:
void (T::*f)() const;
};
template <class T, class Arg>
class mem_fun1_t<void, T, Arg> : public binary_function<T *, Arg, void> {
public:
explicit mem_fun1_t(void (T::*pf)(Arg)) : f(pf) {}
void operator()(T *p, Arg x) const { (p->*f)(x); }
private:
void (T::*f)(Arg);
};
template <class T, class Arg>
class const_mem_fun1_t<void, T, Arg>
: public binary_function<const T *, Arg, void> {
public:
explicit const_mem_fun1_t(void (T::*pf)(Arg) const) : f(pf) {}
void operator()(const T *p, Arg x) const { (p->*f)(x); }
private:
void (T::*f)(Arg) const;
};
template <class T, class Arg>
class mem_fun1_ref_t<void, T, Arg> : public binary_function<T, Arg, void> {
public:
explicit mem_fun1_ref_t(void (T::*pf)(Arg)) : f(pf) {}
void operator()(T &r, Arg x) const { (r.*f)(x); }
private:
void (T::*f)(Arg);
};
template <class T, class Arg>
class const_mem_fun1_ref_t<void, T, Arg>
: public binary_function<T, Arg, void> {
public:
explicit const_mem_fun1_ref_t(void (T::*pf)(Arg) const) : f(pf) {}
void operator()(const T &r, Arg x) const { (r.*f)(x); }
private:
void (T::*f)(Arg) const;
};
template <class S, class T>
inline mem_fun_t<S, T> mem_fun(S (T::*f)()) {
return mem_fun_t<S, T>(f);
}
template <class S, class T>
inline const_mem_fun_t<S, T> mem_fun(S (T::*f)() const) {
return const_mem_fun_t<S, T>(f);
}
template <class S, class T>
inline mem_fun_ref_t<S, T> mem_fun_ref(S (T::*f)()) {
return mem_fun_ref_t<S, T>(f);
}
template <class S, class T>
inline const_mem_fun_ref_t<S, T> mem_fun_ref(S (T::*f)() const) {
return const_mem_fun_ref_t<S, T>(f);
}
template <class S, class T, class Arg>
inline mem_fun1_t<S, T, Arg> mem_fun(S (T::*f)(Arg)) {
return mem_fun1_t<S, T, Arg>(f);
}
template <class S, class T, class Arg>
inline const_mem_fun1_t<S, T, Arg> mem_fun(S (T::*f)(Arg) const) {
return const_mem_fun1_t<S, T, Arg>(f);
}
template <class S, class T, class Arg>
inline mem_fun1_ref_t<S, T, Arg> mem_fun_ref(S (T::*f)(Arg)) {
return mem_fun1_ref_t<S, T, Arg>(f);
}
template <class S, class T, class Arg>
inline const_mem_fun1_ref_t<S, T, Arg> mem_fun_ref(S (T::*f)(Arg) const) {
return const_mem_fun1_ref_t<S, T, Arg>(f);
}
template <class S, class T, class Arg>
inline mem_fun1_t<S, T, Arg> mem_fun1(S (T::*f)(Arg)) {
return mem_fun1_t<S, T, Arg>(f);
}
template <class S, class T, class Arg>
inline const_mem_fun1_t<S, T, Arg> mem_fun1(S (T::*f)(Arg) const) {
return const_mem_fun1_t<S, T, Arg>(f);
}
template <class S, class T, class Arg>
inline mem_fun1_ref_t<S, T, Arg> mem_fun1_ref(S (T::*f)(Arg)) {
return mem_fun1_ref_t<S, T, Arg>(f);
}
template <class S, class T, class Arg>
inline const_mem_fun1_ref_t<S, T, Arg> mem_fun1_ref(S (T::*f)(Arg) const) {
return const_mem_fun1_ref_t<S, T, Arg>(f);
}
// struct pair
template <class T1, class T2>
struct pair {
using first_type = T1;
using second_type = T2;
first_type first;
second_type second;
pair() : first(first_type()), second(second_type()) {}
pair(const first_type &a, const second_type &b) : first(a), second(b) {}
template <class U1, class U2>
pair(const pair<U1, U2> &rhs) : first(rhs.first), second(rhs.second) {}
};
// Compartor for pair
template <class T1, class T2>
inline bool operator==(const pair<T1, T2> &lhs, const pair<T1, T2> &rhs) {
return lhs.first == rhs.first && lhs.second == rhs.second;
}
template <class T1, class T2>
inline bool operator<(const pair<T1, T2> &lhs, const pair<T1, T2> &rhs) {
return lhs.first < rhs.first ||
(!(rhs.first < lhs.first) && lhs.second < rhs.second);
}
template <class T1, class T2>
inline bool operator!=(const pair<T1, T2> &lhs, const pair<T1, T2> &rhs) {
return !(lhs == rhs);
}
template <class T1, class T2>
inline bool operator>(const pair<T1, T2> &lhs, const pair<T1, T2> &rhs) {
return rhs < lhs;
}
template <class T1, class T2>
inline bool operator<=(const pair<T1, T2> &lhs, const pair<T1, T2> &rhs) {
return !(rhs < lhs);
}
template <class T1, class T2>
inline bool operator>=(const pair<T1, T2> &lhs, const pair<T1, T2> &rhs) {
return !(lhs < rhs);
}
// make pair
template <class T1, class T2>
inline pair<T1, T2> make_pair(const T1 &first, const T2 &second) {
return pair<T1, T2>(first, second);
}
} // namespace MiniSTL