-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_llama_3_v.py
72 lines (57 loc) · 2.41 KB
/
demo_llama_3_v.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import ssl
ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
ssl_context.load_cert_chain('cert.pem', keyfile='key.pem')
from fastapi import FastAPI, HTTPException, File, UploadFile
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse
from starlette.responses import FileResponse
import os
from PIL import Image
import requests
from transformers import AutoModel, AutoTokenizer
import base64
import cv2
import numpy as np
import torch
app = FastAPI()
model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, torch_dtype=torch.float16)
model = model.to(device='cuda')
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True)
model.eval()
@app.post("/predict")
async def predict_image(image_data: dict):
try:
print(image_data['image'][:80])
# Convert base64 image data to OpenCV image
image_decoded = base64.b64decode(image_data['image'].split(",")[1])
# Convert the binary data to a NumPy array
image_array = np.frombuffer(image_decoded, np.uint8)
# Decode the NumPy array into an OpenCV image
image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
# Convert the OpenCV image to PIL image format
pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
msgs = [{'role': 'user', 'content': image_data['prompt']}]
res = model.chat(
image=pil_image,
msgs=msgs,
tokenizer=tokenizer,
sampling=True, # if sampling=False, beam_search will be used by default
temperature=0.7,
# system_prompt='' # pass system_prompt if needed
)
print(res)
result_text = res
return {"text": result_text}
except Exception as e:
print(e)
raise HTTPException(status_code=500, detail="Error processing image: " + str(e))
# Mount the 'static' directory to serve HTML files
#app.mount("/", StaticFiles(directory="static",html = True), name="static")
@app.get("/", response_class=HTMLResponse)
async def read_root():
with open(os.path.join("static", "demo.html")) as f:
html_content = f.read()
return HTMLResponse(content=html_content)
# Mount the static directory to serve static files
app.mount("/static", StaticFiles(directory="static"), name="static")