forked from christianpayer/mnist_png
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_mnist_to_png.py
executable file
·68 lines (56 loc) · 2.07 KB
/
convert_mnist_to_png.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python
import os
import struct
import sys
from array import array
from os import path
import png
# source: http://abel.ee.ucla.edu/cvxopt/_downloads/mnist.py
def read(dataset = "training", path = "."):
if dataset is "training":
fname_img = os.path.join(path, 'train-images-idx3-ubyte')
fname_lbl = os.path.join(path, 'train-labels-idx1-ubyte')
elif dataset is "testing":
fname_img = os.path.join(path, 't10k-images-idx3-ubyte')
fname_lbl = os.path.join(path, 't10k-labels-idx1-ubyte')
else:
raise ValueError, "dataset must be 'testing' or 'training'"
flbl = open(fname_lbl, 'rb')
magic_nr, size = struct.unpack(">II", flbl.read(8))
lbl = array("b", flbl.read())
flbl.close()
fimg = open(fname_img, 'rb')
magic_nr, size, rows, cols = struct.unpack(">IIII", fimg.read(16))
img = array("B", fimg.read())
fimg.close()
return lbl, img, size, rows, cols
def write_dataset(labels, data, size, rows, cols, output_dir):
# create output directories
output_dirs = [
path.join(output_dir, str(i))
for i in range(10)
]
for dir in output_dirs:
if not path.exists(dir):
os.makedirs(dir)
# write data
for (i, label) in enumerate(labels):
output_filename = path.join(output_dirs[label], str(i) + ".png")
print("writing " + output_filename)
with open(output_filename, "wb") as h:
w = png.Writer(cols, rows, greyscale=True)
data_i = [
data[ (i*rows*cols + j*cols) : (i*rows*cols + (j+1)*cols) ]
for j in range(rows)
]
w.write(h, data_i)
if __name__ == "__main__":
if len(sys.argv) != 3:
print("usage: {0} <input_path> <output_path>".format(sys.argv[0]))
sys.exit()
input_path = sys.argv[1]
output_path = sys.argv[2]
for dataset in ["training", "testing"]:
labels, data, size, rows, cols = read(dataset, input_path)
write_dataset(labels, data, size, rows, cols,
path.join(output_path, dataset))