-
Notifications
You must be signed in to change notification settings - Fork 14
/
distributed.py
165 lines (119 loc) · 4.56 KB
/
distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import math
import pickle
import torch
from torch import distributed as dist
from torch.utils.data.sampler import Sampler
def get_rank():
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def synchronize():
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def get_world_size():
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def all_gather(data):
world_size = get_world_size()
if world_size == 1:
return [data]
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to('cuda')
local_size = torch.IntTensor([tensor.numel()]).to('cuda')
size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
tensor_list = []
for _ in size_list:
tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda'))
if local_size != max_size:
padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda')
tensor = torch.cat((tensor, padding), 0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_loss_dict(loss_dict):
world_size = get_world_size()
if world_size < 2:
return loss_dict
with torch.no_grad():
keys = []
losses = []
for k in sorted(loss_dict.keys()):
keys.append(k)
losses.append(loss_dict[k])
losses = torch.stack(losses, 0)
dist.reduce(losses, dst=0)
if dist.get_rank() == 0:
losses /= world_size
reduced_losses = {k: v for k, v in zip(keys, losses)}
return reduced_losses
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Code is copy-pasted exactly as in torch.utils.data.distributed.
# FIXME remove this once c10d fixes the bug it has
class DistributedSampler(Sampler):
"""Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Arguments:
dataset: Dataset used for sampling.
num_replicas (optional): Number of processes participating in
distributed training.
rank (optional): Rank of the current process within num_replicas.
"""
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
def __iter__(self):
if self.shuffle:
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = torch.arange(len(self.dataset)).tolist()
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
offset = self.num_samples * self.rank
indices = indices[offset : offset + self.num_samples]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch