-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathlayers.py
555 lines (454 loc) · 17.3 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
# layers.py ---
#
# Filename: layers.py
# Description: Special layers not included in tensorflow
# Author: Kwang Moo Yi
# Maintainer: Kwang Moo Yi
# Created: Thu Jun 29 12:23:35 2017 (+0200)
# Version:
# Package-Requires: ()
# URL:
# Doc URL:
# Keywords:
# Compatibility:
#
#
# Commentary:
#
#
#
#
# Change Log:
#
#
#
# Copyright (C), EPFL Computer Vision Lab.
# Code:
import numpy as np
import tensorflow as tf
import tensorflow.contrib.layers as tcl
from six.moves import xrange
from utils import get_tensor_shape, get_W_b_conv2d, get_W_b_fc
def leaky_relu(x, alpha=0.2):
return tf.maximum(tf.minimum(0.0, alpha * x), x)
def relu(x):
return tf.nn.relu(x)
def batch_norm(x, training, data_format="NHWC"):
# return tcl.batch_norm(x, center=True, scale=True, is_training=training, data_format=data_format)
if data_format == "NHWC":
axis = -1
else:
axis = 1
return tf.layers.batch_normalization(x, training=training, trainable=False, axis=axis)
def norm_spatial_subtractive(inputs, sub_kernel, data_format="NHWC"):
"""Performs the spatial subtractive normalization
Parameters
----------
inputs: tensorflow 4D tensor, NHWC format
input to the network
sub_kernel: numpy.ndarray, 2D matrix
the subtractive normalization kernel
"""
raise NotImplementedError(
"This function is buggy! don't use before extensive debugging!")
# ----------
# Normalize kernel.
# Note that unlike Torch, we don't divide the kernel here. We divide
# when it is fed to the convolution, since we use it to generate the
# coefficient map.
kernel = sub_kernel.astype("float32")
norm_kernel = (kernel / np.sum(kernel))
# ----------
# Compute the adjustment coef.
# This allows our mean computation to compensate for the border area,
# where you have less terms adding up. Torch used convolution with a
# ``one'' image, but since we do not want the library to depend on
# other libraries with convolutions, we do it manually here.
input_shape = get_tensor_shape(inputs)
assert len(input_shape) == 4
if data_format == "NHWC":
coef = np.ones(input_shape[1:3], dtype="float32")
else:
coef = np.ones(input_shape[2:], dtype="float32")
pad_x = norm_kernel.shape[1] // 2
pad_y = norm_kernel.shape[0] // 2
# Corners
# for the top-left corner
tl_cumsum_coef = np.cumsum(np.cumsum(
norm_kernel[::-1, ::-1], axis=0), axis=1)[::1, ::1]
coef[:pad_y + 1, :pad_x + 1] = tl_cumsum_coef[pad_y:, pad_x:]
# for the top-right corner
tr_cumsum_coef = np.cumsum(np.cumsum(
norm_kernel[::-1, ::1], axis=0), axis=1)[::1, ::-1]
coef[:pad_y + 1, -pad_x - 1:] = tr_cumsum_coef[pad_y:, :pad_x + 1]
# for the bottom-left corner
bl_cumsum_coef = np.cumsum(np.cumsum(
norm_kernel[::1, ::-1], axis=0), axis=1)[::-1, ::1]
coef[-pad_y - 1:, :pad_x + 1] = bl_cumsum_coef[:pad_y + 1, pad_x:]
# for the bottom-right corner
br_cumsum_coef = np.cumsum(np.cumsum(
norm_kernel[::1, ::1], axis=0), axis=1)[::-1, ::-1]
coef[-pad_y - 1:, -pad_x - 1:] = br_cumsum_coef[:pad_y + 1, :pad_x + 1]
# Sides
tb_slice = slice(pad_y + 1, -pad_y - 1)
# for the left side
fill_value = tl_cumsum_coef[-1, pad_x:]
coef[tb_slice, :pad_x + 1] = fill_value.reshape([1, -1])
# for the right side
fill_value = br_cumsum_coef[0, :pad_x + 1]
coef[tb_slice, -pad_x - 1:] = fill_value.reshape([1, -1])
lr_slice = slice(pad_x + 1, -pad_x - 1)
# for the top side
fill_value = tl_cumsum_coef[pad_y:, -1]
coef[:pad_y + 1, lr_slice] = fill_value.reshape([-1, 1])
# for the right side
fill_value = br_cumsum_coef[:pad_y + 1, 0]
coef[-pad_y - 1:, lr_slice] = fill_value.reshape([-1, 1])
# # code for validation of above
# img = np.ones_like(input, dtype='float32')
# import cv2
# coef_cv2 = cv2.filter2D(img, -1, norm_kernel,
# borderType=cv2.BORDER_CONSTANT)
# ----------
# Extract convolutional mean
# Make filter a c01 filter by repeating. Note that we normalized above
# with the number of repetitions we are going to do.
if data_format == "NHWC":
norm_kernel = np.tile(norm_kernel, [input_shape[-1], 1, 1])
else:
norm_kernel = np.tile(norm_kernel, [input_shape[1], 1, 1])
# Re-normlize the kernel so that the sum is one.
norm_kernel /= np.sum(norm_kernel)
# add another axis in from to make oc01 filter, where o is the number
# of output dimensions (in our case, 1!)
norm_kernel = norm_kernel[np.newaxis, ...]
# # To pad with zeros, half the size of the kernel (only for 01 dims)
# border_mode = tuple(s // 2 for s in norm_kernel.shape[2:])
# Convolve the mean filter. Results in shape of (batch_size,
# input_shape[1], input_shape[2], 1).
# For tensorflow, the kernel shape is 01co, which is different.... why?!
conv_mean = tf.nn.conv2d(
inputs,
norm_kernel.astype("float32").transpose(2, 3, 1, 0),
strides=[1, 1, 1, 1],
padding="SAME",
data_format=data_format,
)
# ----------
# Adjust convolutional mean with precomputed coef
# This is to prevent border values being too small.
if data_format == "NHWC":
coef = coef[None][..., None].astype("float32")
else:
coef = coef[None, None].astype("float32")
adj_mean = conv_mean / coef
# # Make second dimension broadcastable as we are going to
# # subtract for all channels.
# adj_mean = T.addbroadcast(adj_mean, 1)
# ----------
# Subtract mean
sub_normalized = inputs - adj_mean
# # line for debugging
# test = theano.function(inputs=[input], outputs=[sub_normalized])
return sub_normalized
def pool_l2(inputs, ksize, stride, padding, data_format="NHWC"):
"""L2 pooling, NHWC"""
if data_format == "NHWC":
ksizes = [1, ksize, ksize, 1]
strides = [1, stride, stride, 1]
else:
ksizes = [1, 1, ksize, ksize]
strides = [1, 1, stride, stride]
scaler = tf.cast(ksize * ksize, tf.float32)
return tf.sqrt(
scaler * # Multiply since we want to sum
tf.nn.avg_pool(
tf.square(inputs),
ksize=ksizes,
strides=strides,
padding=padding,
data_format=data_format,
))
def pool_max(inputs, ksize, stride, padding, data_format="NHWC"):
"""max pooling, NHWC"""
if data_format == "NHWC":
ksizes = [1, ksize, ksize, 1]
strides = [1, stride, stride, 1]
else:
ksizes = [1, 1, ksize, ksize]
strides = [1, 1, stride, stride]
return tf.nn.max_pool(
inputs,
ksize=ksizes,
strides=strides,
padding=padding,
data_format=data_format,
)
def pool_avg(inputs, ksize, stride, padding, data_format="NHWC"):
"""max pooling, NHWC"""
if data_format == "NHWC":
ksizes = [1, ksize, ksize, 1]
strides = [1, stride, stride, 1]
else:
ksizes = [1, 1, ksize, ksize]
strides = [1, 1, stride, stride]
return tf.nn.avg_pool(
inputs,
ksize=ksizes,
strides=strides,
padding=padding,
data_format=data_format,
)
def conv_2d(inputs, ksize, nchannel, stride, padding, data_format="NHWC"):
"""conv 2d, NHWC"""
if data_format == "NHWC":
fanin = get_tensor_shape(inputs)[-1]
strides = [1, stride, stride, 1]
else:
fanin = get_tensor_shape(inputs)[1]
strides = [1, 1, stride, stride]
W, b = get_W_b_conv2d(ksize=ksize, fanin=fanin, fanout=nchannel)
conv = tf.nn.conv2d(
inputs, W, strides=strides,
padding=padding, data_format=data_format)
return tf.nn.bias_add(conv, b, data_format=data_format)
def conv_2d_trans(inputs, ksize, nchannel, stride, padding, data_format="NHWC"):
"""conv 2d, transposed, NHWC"""
assert(padding == "VALID")
inshp = tf.shape(inputs)
if data_format == "NHWC":
fanin = get_tensor_shape(inputs)[-1]
strides = [1, stride, stride, 1]
output_shape = tf.stack(
[inshp[0],
inshp[1] * int(stride), # + max(ksize - stride, 0),
inshp[2] * int(stride), # + max(ksize - stride, 0),
nchannel])
else:
fanin = get_tensor_shape(inputs)[1]
strides = [1, 1, stride, stride]
output_shape = tf.stack(
[inshp[0],
nchannel,
inshp[2] * int(stride), # + max(ksize - stride, 0),
inshp[3] * int(stride), # + max(ksize - stride, 0)
])
with tf.variable_scope("W"):
W, _ = get_W_b_conv2d(ksize=ksize, fanin=nchannel, fanout=fanin)
with tf.variable_scope("b"):
_, b = get_W_b_conv2d(ksize=ksize, fanin=fanin, fanout=nchannel)
deconv2dres = tf.nn.conv2d_transpose(
inputs, W, output_shape, strides=strides, padding=padding,
data_format=data_format)
deconv2dres = tf.reshape(deconv2dres, output_shape)
return tf.nn.bias_add(deconv2dres, b, data_format=data_format)
def fc(inputs, fanout):
"""fully connected, NC """
inshp = get_tensor_shape(inputs)
fanin = np.prod(inshp[1:])
# Flatten input if needed
if len(inshp) > 2:
inputs = tf.reshape(inputs, (inshp[0], fanin))
W, b = get_W_b_fc(fanin=fanin, fanout=fanout)
mul = tf.matmul(inputs, W)
return tf.nn.bias_add(mul, b)
def ghh(inputs, num_in_sum, num_in_max, data_format="NHWC"):
"""GHH layer
LATER: Make it more efficient
"""
# Assert NHWC
assert data_format == "NHWC"
# Check validity
inshp = get_tensor_shape(inputs)
num_channels = inshp[-1]
pool_axis = len(inshp) - 1
assert (num_channels % (num_in_sum * num_in_max)) == 0
# Abuse cur_in
cur_in = inputs
# # Okay the maxpooling and avgpooling functions do not like weird
# # pooling. Just reshape to avoid this issue.
# inshp = get_tensor_shape(inputs)
# numout = int(inshp[1] / (num_in_sum * num_in_max))
# cur_in = tf.reshape(cur_in, [
# inshp[0], numout, num_in_sum, num_in_max, inshp[2], inshp[3]
# ])
# Reshaping does not work for undecided input sizes. use split instead
cur_ins_to_max = tf.split(
cur_in, num_channels // num_in_max, axis=pool_axis)
# Do max and concat them back
cur_in = tf.concat([
tf.reduce_max(cur_ins, axis=pool_axis, keep_dims=True) for
cur_ins in cur_ins_to_max
], axis=pool_axis)
# Create delta
delta = (1.0 - 2.0 * (np.arange(num_in_sum) % 2)).astype("float32")
delta = tf.reshape(delta, [1] * (len(inshp) - 1) + [num_in_sum])
# Again, split into multiple pieces
cur_ins_to_sum = tf.split(
cur_in, num_channels // (num_in_max * num_in_sum),
axis=pool_axis)
# Do delta multiplication, sum, and concat them back
cur_in = tf.concat([
tf.reduce_sum(cur_ins * delta, axis=pool_axis, keep_dims=True) for
cur_ins in cur_ins_to_sum
], axis=pool_axis)
return cur_in
def crop_and_concat(x1, x2):
""" Crop x1 as size x2 and concat """
x1_shape = tf.shape(x1)
x2_shape = tf.shape(x2)
# x1_shape = [_s if _s is not None else -
# 1 for _s in x1.get_shape().as_list()]
# x2_shape = [_s if _s is not None else -
# 1 for _s in x2.get_shape().as_list()]
# offsets for the top left corner of the crop
offsets = [0,
(x1_shape[1] - x2_shape[1]) // 2,
(x1_shape[2] - x2_shape[2]) // 2,
0]
size = [-1, x2_shape[1], x2_shape[2], -1]
x1_crop = tf.slice(x1, offsets, size)
# return tf.concat(3, [x1_crop, x2])
return tf.concat([x1_crop, x2], axis=3)
def conv2d_unet(x, n_class, is_training, layers=3, features_root=16,
filter_size=4, pool_size=2, max_features=512,
pool_method="stride", padding="VALID",
last_activation_fn=None, init_stddev=0.02,
data_format="NHWC"):
"""
Creates a new convolutional unet for the given parametrization.
:param x: input tensor, shape [?,nx,ny,channels]
:param channels: number of channels in the input image
:param n_class: number of output labels
:param layers: number of layers in the net
:param features_root: number of features in the first layer
:param filter_size: size of the convolution filter
:param pool_size: size of the max pooling operation
:param summaries: Flag if summaries should be created
"""
in_node = x
if pool_method == "stride":
stride = 2
else:
raise NotImplementedError("TODO")
dw_convs = {}
# Initial convolution (no residual here, no activation)
with tf.variable_scope("initconv"):
in_node = conv_2d(
in_node, ksize=filter_size,
nchannel=features_root,
stride=1,
padding=padding,
data_format=data_format,
)
# in_node = batch_norm(in_node, is_training)
# in_node = tf.nn.relu(in_node)
print("Input---")
print("output shape = {}".format(in_node.get_shape()))
# Original input as -1 dw_h_conv layer
dw_convs[-1] = in_node
# layer n with have num_features[n] channels as output
num_features = {}
for layer in xrange(-1, layers):
num_features[layer] = int(
min(max_features, 2**(layer + 1) * features_root))
# num_features[layers - 1] = num_features[layers - 2]
# down layers
print("Conv down---")
with tf.variable_scope("convdown"):
for layer in range(0, layers):
with tf.variable_scope("level" + str(layer)):
features_out = num_features[layer]
# Bn-relu-conv
in_node = batch_norm(in_node, is_training)
in_node = tf.nn.relu(in_node)
# Conv with strides instead of pooling!
# in_node = conv_2d(
# in_node, ksize=stride,
# nchannel=features_out,
# stride=stride,
# padding=padding,
# data_format=data_format,
# )
in_node = conv_2d(
in_node, ksize=stride,
nchannel=features_out,
stride=1,
padding=padding,
data_format=data_format,
)
in_node = pool_avg(
in_node,
ksize=2,
stride=2,
padding=padding,
data_format=data_format,
)
dw_convs[layer] = in_node
print("output shape = {}".format(dw_convs[layer].get_shape()))
in_node = dw_convs[layers - 1]
# up layers
print("Conv up---")
with tf.variable_scope("convup"):
# from layers -2 to -1
for layer in range(layers - 2, -2, -1):
# print(layer)
with tf.variable_scope("level" + str(layer)):
# features_in = num_features[layer + 1]
features_out = num_features[layer]
# # Unpool if necessary
# if pool_method != "stride":
# with tf.variable_scope("unpool"):
# in_node = conv_2d_trans(
# in_node, ksize=filter_size,
# nchannel=features_in,
# stride=stride,
# padding=padding,
# data_format=data_format,
# )
# Perform deconv
with tf.variable_scope("deconv"):
in_node = batch_norm(in_node, is_training)
in_node = tf.nn.relu(in_node)
in_node = conv_2d_trans(
in_node, ksize=filter_size,
nchannel=features_out,
stride=stride,
padding=padding,
data_format=data_format,
)
# Bring in skip connections
in_node = crop_and_concat(
dw_convs[layer], in_node)
# mark that the features_in is now doubled
# features_in = num_features[layer + 1] + num_features[layer]
# Convolve with skip connections
with tf.variable_scope("conv"):
in_node = batch_norm(in_node, is_training)
in_node = tf.nn.relu(in_node)
in_node = conv_2d(
in_node, ksize=filter_size,
nchannel=features_out,
stride=1,
padding=padding,
data_format=data_format,
)
print("output shape = {}".format(in_node.get_shape()))
# Final convolution (no activation, no residual)
with tf.variable_scope("lastconv"):
# Do a batch normalization before the final, just as we did for input
with tf.variable_scope("last-pre-bn"):
in_node = batch_norm(in_node, is_training)
# Then do the proper thing
in_node = conv_2d(
in_node, ksize=1,
nchannel=n_class,
stride=1,
padding=padding,
data_format=data_format,
)
print("output shape = {}".format(in_node.get_shape()))
output_map = in_node
return output_map
#
# layers.py ends here