-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunLatent.py
99 lines (93 loc) · 2.51 KB
/
runLatent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python3
#%%---------------------------------------------------------------------------
# IMPORTS
#-----------------------------------------------------------------------------
import numpy as np
import matplotlib.pyplot as plt
from netw.miscfuncs import makeTensor,fromTensor
from optim import tstG
from airfoildata import loadAirfoilData
from decoder import PerceptronDecoder
from auxfuncs import shoelaceArea2,shoelaceAreaF,drawAirfoil,netwDataName
#from projarea import prjWing,areaLossF,areaLossG
#%%
zdim=8
step=25
n1 = 16
n2 = 32
n3 = 16
targetA= 0.1
dataT = loadAirfoilData(zdim=zdim,batchN=100,trainP=True,step=step,targetA=targetA)
dataV = loadAirfoilData(zdim=zdim,batchN=1,trainP=False,step=step,targetA=targetA)
ydim = dataT.target.size(1)
drawAirfoil(dataT.target[0])
fileName = netwDataName(zdim,n1,n2,n3)
#%%
for i in range(20):
xy = dataT.target[i].view((-1,2))
drawAirfoil(xy)
print(i,shoelaceArea2(xy).item())
plt.pause(0.1)
#%%
loadP = False
net = PerceptronDecoder(n1=n1,n2=n2,n3=n3,nIn=zdim,nOut=ydim,reluP=True)
net.toGpu()
if(loadP):
# Restore from file
net.restore(fileName)
dataT.restore(fileName)
dataT.setids(randP=False)
else:
# Train network
net.gtrain(dataT,fileName=fileName)
#%%
idx = 600
y = dataT.targetV(idx)
z = dataT.latentV(idx)
x = net(z)
plt.clf()
drawAirfoil(y,'-r')
drawAirfoil(x,'-b')
#%%
# from geom import shoelaceArea1
# from optim import tstG
z = dataT.latentV(10)
x = net(z)
z0 = fromTensor(z)
x0 = fromTensor(x)
drawAirfoil(x0,'-b')
#%%
print(areaLossF(net,z0)+shoelaceAreaF(x0.reshape((-1,2))))
print(areaLossG(net,z0))
#%%
tstG(lambda z : areaLossF(net,z),lambda z : areaLossG(net,z),z0,eps=1e-3)
#%%
targetA = areaLossF(net,z)*2.0
z1=prjWing(net,z0,targetA=targetA)
x1=fromTensor(net(makeTensor(z1)))
drawAirfoil(x0,'-b')
drawAirfoil(x1,'-r')
print(targetA,areaLossF(net,z1),shoelaceArea1(x1),shoelaceAreaF(x1.reshape((-1,2))))
#%%
step = 25
xys0 = loadWingProfiles(step=step)
#%%
areas = np.zeros(xys0.shape[0],dtype=np.float64)
for i,xy in enumerate(xys0):
xy = xy.reshape((-1,2))
areas[i]=shoelaceAreaF(xy)
#%%
targetA = 0.1
xys1 = np.zeros_like(xys0)
for i,xy0 in enumerate(xys0):
xy0 = xy0.reshape((-1,2))
xy1 = affPrjWing(xy0,targetA)
xys1[i,:]=xy1.flatten()
#%%
saveWingProfiles(xys1,targetA=targetA,step=step)
#%%
xys = loadWingProfiles(step=step,targetA=targetA)
for i in range(10):
xy = xys[i]
drawAirfoil(xy,'-r')
print(i,shoelaceAreaF(xy.reshape((-1,2))))