-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprojarea.py
218 lines (162 loc) · 5.76 KB
/
projarea.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python3
#%---------------------------------------------------------------------------
# IMPORTS
#-----------------------------------------------------------------------------
#%%
import numpy as np
import scipy.optimize as opt
import torch
import torch.nn as nn
from ddn.pytorch.node import EqConstDeclarativeNode,DeclarativeLayer
from netw.miscfuncs import fromTensor,currentDevice
from nets import GradNet
from decoder import PerceptronDecoder
from auxfuncs import shoelaceAreaF,shoelaceAreaG,affTrf,batchShoelaceArea
from auxfuncs import loadWingProfiles,drawAirfoil
#%%
class AreaProjector(GradNet):
lossFunction = nn.MSELoss()
def __init__(self,n1=16,n2=32,n3=16,nIn=8,nOut=54,targetA=0.1,sigN=0):
super().__init__()
ddn = constAreaNode(targetA)
ddn.eps = 1e-3
self.percept = PerceptronDecoder(n1=n1,n2=n2,n3=n3,nIn=nIn,nOut=nOut,reluP=True)
self.prjlayer = DeclarativeLayer(ddn)
self.sigN = sigN
def toGpu(self):
super().toGpu()
self.percept.toGpu()
def forward(self,zs):
sigN = self.sigN
xys = self.percept(zs)
if(sigN==0):
xys = self.prjlayer(xys)
else:
xys[0:sigN] = self.prjlayer(xys[0:sigN])
return xys
#%% Load wing data
if __name__ == "__main__":
xys=loadWingProfiles(step=25)
xyb=torch.tensor(xys[0:3,:],requires_grad=True,device=currentDevice())
xy0=xyb[0]
drawAirfoil(xy0)
#%%----------------------------------------------------------------------------
# Projection
#------------------------------------------------------------------------------
#%%
def affPrjWing(xy,targetA,drawP=False):
assert(2==xy.shape[1])
xy0 = xy.copy()
n0 = xy0.shape[0]
def objF(aff):
xy1 = affTrf(aff,xy0)
d01 = xy0-xy1
return 0.5*np.sum(d01*d01)
def objG(aff):
xy1 = affTrf(aff,xy0)
x0 = xy0[:,0]
y0 = xy0[:,1]
dF_dxy = (xy1-xy0).flatten()
dxy_dA = np.zeros((6,n0*2),dtype=np.float32)
idsx = np.arange(0,n0*2,2)
idsy = idsx+1
dxy_dA[0,idsx] = x0
dxy_dA[1,idsx] = y0
dxy_dA[2,idsy] = x0
dxy_dA[3,idsy] = y0
dxy_dA[4,idsx] = 1.0
dxy_dA[5,idsy] = 1.0
J = dxy_dA @ dF_dxy
g = J.flatten()
return g
def cstF(aff):
xy1 = affTrf(aff,xy0)
return shoelaceAreaF(xy1)-targetA
def cstG(aff):
xy1 = affTrf(aff,xy0)
x0 = xy0[:,0]
y0 = xy0[:,1]
dF_dxy = shoelaceAreaG(xy1).flatten()
dxy_dA = np.zeros((4,n0*2),dtype=np.float32)
idsx = np.arange(0,n0*2,2)
idsy = idsx+1
dxy_dA[0,idsx] = x0
dxy_dA[1,idsx] = y0
dxy_dA[2,idsy] = x0
dxy_dA[3,idsy] = y0
J = dxy_dA @ dF_dxy
g = np.zeros(6,dtype=np.float32)
g[0:4] = J.flatten()
return g
aff0 = np.array(([1.0,0.0,0.0,1.0,0.0,0.0]),dtype=np.float32)
cons = ({'type': 'eq', 'fun': cstF, 'jac': cstG})
bnds = opt.Bounds(-100.0,100.0,keep_feasible=True)
# aff0 += 0.7*np.random.randn(6)
# tstG(objF,objG,aff0,1e-6)
# return
#aff0 += 0.7*np.random.randn(6)
#tstG(cstF,cstJ,aff0,1e-6)
# return
res = opt.minimize(objF,aff0,method='SLSQP',constraints=cons,bounds=bnds,jac=objG)
if(not(res.success)):
print('affPrjWing(: Minimization failed.')
# Return the deformed contour
aff1 = res.x
xy1 = affTrf(aff1,xy0)
if(drawP):
drawAirfoil(xy0,'-b')
drawAirfoil(xy1,'-r')
return(xy1)
if __name__ == "__main__":
xyv = fromTensor(xy0.view((-1,2)))
xyv += 0.05*np.random.randn(xyv.shape[0],2)
xy1 = affPrjWing(xyv,0.1,drawP=True)
print(shoelaceAreaF(xyv),shoelaceAreaF(xy1))
#%%
class constAreaNode(EqConstDeclarativeNode):
def __init__(self,targetA):
super().__init__()
self.targetA = targetA
def objective(self,x,y=None):
d1 = x-y
d2 = d1*d1
return 0.5*d2.sum(dim=1)
def equality_constraints(self,x,y=None):
with torch.enable_grad():
area = batchShoelaceArea(y)
cs = (area - self.targetA)[:,None]
return cs
def solve(self,xys0):
#xys1 = torch.zeros_like(xys0,requires_grad=False)
xys1 = np.zeros(xys0.size(),dtype=np.float32)
targetA = self.targetA
for i, xy in enumerate(xys0):
xy0 = fromTensor(xy).reshape((-1,2))
xy1 = affPrjWing(xy0,targetA).flatten()
xys1 [i,:] = xy1
#xys1 [i,:] = torch.tensor(xy1)
return torch.tensor(xys1,device=xys0.device,requires_grad=True),None
#%%
if __name__ == "__main__":
ddn = constAreaNode(0.1)
ddn.eps = 1e-3
decL = DeclarativeLayer(ddn)
xy1 = decL(xyb)
eql1 = ddn.equality_constraints(xyb,y=xy1)
ob1 = ddn.objective(xy0,y=xy1)
grd = ddn.gradient(xyb,y=xy1)
#%%
if __name__ == "__main__":
obj1 = torch.sum(xy1 @ xy1.T)
obj1.backward()
grd1 = xyb.grad
#%% Compare analytical gradients to finite difference ones
if __name__ == "__main__":
eps = 1e-3
for i in range(0,3):
for j in range(0,5):
xyc = xyb.clone().detach()
xyc[i,j] += eps
xy2 = decL(xyc)
obj2 = torch.sum(xy2 @ xy2.T)
print(i,j,grd1[i,j].item(),(obj2-obj1).item()/eps)