-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathsgdr_callback.py
87 lines (68 loc) · 3.1 KB
/
sgdr_callback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import numpy as np
from keras.callbacks import Callback
from keras import backend as K
class SGDR(Callback):
"""This callback implements the learning rate schedule for
Stochastic Gradient Descent with warm Restarts (SGDR),
as proposed by Loshchilov & Hutter (https://arxiv.org/abs/1608.03983).
The learning rate at each epoch is computed as:
lr(i) = min_lr + 0.5 * (max_lr - min_lr) * (1 + cos(pi * i/num_epochs))
Here, num_epochs is the number of epochs in the current cycle, which starts
with base_epochs initially and is multiplied by mul_epochs after each cycle.
# Example
```python
sgdr = SGDR(min_lr=0.0, max_lr=0.05,
base_epochs=10, mul_epochs=2)
model.compile(optimizer=keras.optimizers.SGD(decay=1e-4, momentum=0.9),
loss=loss)
model.fit(X_train, Y_train, callbacks=[sgdr])
```
# Arguments
min_lr: minimum learning rate reached at the end of each cycle.
max_lr: maximum learning rate used at the beginning of each cycle.
base_epochs: number of epochs in the first cycle.
mul_epochs: factor with which the number of epochs is multiplied
after each cycle.
"""
def __init__(self, min_lr=0.0, max_lr=0.05, base_epochs=10, mul_epochs=2):
super(SGDR, self).__init__()
self.min_lr = min_lr
self.max_lr = max_lr
self.base_epochs = base_epochs
self.mul_epochs = mul_epochs
self.cycles = 0.
self.cycle_iterations = 0.
self.trn_iterations = 0.
self._reset()
def _reset(self, new_min_lr=None, new_max_lr=None,
new_base_epochs=None, new_mul_epochs=None):
"""Resets cycle iterations."""
if new_min_lr != None:
self.min_lr = new_min_lr
if new_max_lr != None:
self.max_lr = new_max_lr
if new_base_epochs != None:
self.base_epochs = new_base_epochs
if new_mul_epochs != None:
self.mul_epochs = new_mul_epochs
self.cycles = 0.
self.cycle_iterations = 0.
def sgdr(self):
cycle_epochs = self.base_epochs * (self.mul_epochs ** self.cycles)
return self.min_lr + 0.5 * (self.max_lr - self.min_lr) * (1 + np.cos(np.pi * (self.cycle_iterations + 1) / cycle_epochs))
def on_train_begin(self, logs=None):
if self.cycle_iterations == 0:
K.set_value(self.model.optimizer.lr, self.max_lr)
else:
K.set_value(self.model.optimizer.lr, self.sgdr())
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs['lr'] = K.get_value(self.model.optimizer.lr)
self.trn_iterations += 1
self.cycle_iterations += 1
if self.cycle_iterations >= self.base_epochs * (self.mul_epochs ** self.cycles):
self.cycles += 1
self.cycle_iterations = 0
K.set_value(self.model.optimizer.lr, self.max_lr)
else:
K.set_value(self.model.optimizer.lr, self.sgdr())