-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_parsing.R
144 lines (118 loc) · 4.35 KB
/
03_parsing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
library(tidyverse)
library(rvest)
library(here)
parse_table <- function(node) {
# scraping table ----------------------------------------------------------
# structure without well defined css classes:
# <table><tr><td> <a href="link_to_doc"></a> </td></tr><tr> text <td></td></tr></table>
# problem:
# rvest::html_table() catches just html_text(), but the links are stored in href-attribute
# solution:
# xml-parser that loops over <tr>-child-nodes (=td), in order to get links to documents
#
# fortlaufende nummer für row, um reihenfolge zu speichern
map_df(1:length(node), function(i) {
# get data of left column in table
left_col <- xml_children(node[[i]])[1] %>% xml_find_all(., "a")
# check if content and get link
if(length(left_col) > 0) {
left_col <- xml_attr(left_col, "href")
} else {
left_col = NA
}
# get data of right column in table
right_col <- xml_children(node[[i]])[2] %>% xml_text(.) %>% trimws()
tibble(link = left_col, raw_text=right_col, seq = i)
})
}
# load html pages ---------------------------------------------------------
dir <- here::here("input", "html", "beratungsstand")
files <- list.files(dir)
df <- map_df(files, function(file) {
page <- file.path(dir, file) %>% read_html(encoding = "utf-8")
parse_table(html_nodes(page, "tr")) %>%
mutate(id = str_remove(file, ".html"))
})
# Extract meta data -------------------------------------------------------
regex_date <- "[0-9]{1,2}\\.[0-9]{1,2}\\.[0-9]{4}"
regex_drucksache <- "[0-9]{2}\\/[0-9]{1,6}"
## besser: durch URL suchen
land <- c("Baden-Württemberg",
"Bayern",
"Berlin",
"Bremen",
"Brandenburg",
"Hamburg",
"Hessen",
"Mecklenburg-Vorpommern",
"Nordrhein-Westfalen",
"Niedersachsen",
"Rheinland-Pfalz",
"Saarland",
"Sachsen",
"Sachsen-Anhalt",
"Schleswig-Holstein",
"Thüringen")
partei <- c("AfD",
"CDU",
"CSU",
"Bündnis 90\\/Die Grünen",
"ie Grünen",
"90\\/GRÜNE",
"90\\/Grüne",
"FDP",
"Freie Wähler",
"FW",
"Die Linke",
"Linke",
"Linkspartei",
"Piraten",
"SPD",
"SSW",
"SSV")
type <- c("Schriftliche Anfrage",
"Mündliche Anfrage",
"Antrag",
"Antwort",
"Bericht",
"Beschlussempfehlung",
"Debatte",
"Gesetzgebung",
"Rechtsverordnung",
"Verordnung",
"Vorschrift",
"Verwaltungsvorschrift",
"Richtlinie",
"Wahl",
"Bestellung",
"Nachfrage",
"Protokoll",
"Ausschussprotokoll",
"Beschluss des Plenums",
"Beratungsphase",
"Aktuelle Stunde",
"Anfrage",
"Haushaltsplan",
"Öffentlicher Haushalt",
"Entschließungsantrag",
"Erste Beratung",
"Plenarprotokoll",
"Unterrichtung",
"Einsetzung einer Enquetekommission",
"Änderungsantrag")
# get data with regex -----------------------------------------------------
lookup_laender <- read_csv(here::here("input", "lookup_laender_ps.csv"))
df <- df %>% mutate(date = str_extract(raw_text, regex_date),
drucksache = str_extract(raw_text, regex_drucksache),
# todo: fall, wenn NA --> aus anderer row übernehmen - am besten da, wo auch eine Drucksache drin ist?
#land = str_extract(raw_text, paste(land, collapse = "|")),
partei = str_extract(raw_text, paste(partei, collapse = "|")),
type = str_extract(raw_text, paste(type, collapse = "|")),
# educated guess whats the title and desc, and drucksachen
meta = ifelse(is.na(date) & seq == 1, "title",
ifelse(is.na(date) & seq == 2, "desc", "drucksache")),
# ps_id = parlamentsspiegel_id
ps_id = str_remove(str_extract(id, "[A-Z]+_"), "_")
) %>%
left_join(lookup_laender, by = "ps_id")
write_tsv(df, here::here("input", "data", "df.csv"))