-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathutils.py
177 lines (141 loc) · 5.38 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os, sys, time, random
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from torch import nn
def print_log(string, log):
print (string)
with open(log, 'w+') as f:
f.write(string)
def time_string():
ISOTIMEFORMAT = '%Y-%m-%d %X'
string = '[{}]'.format(
time.strftime(ISOTIMEFORMAT, time.gmtime(time.time())))
return string
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class RecorderMeter(object):
"""Computes and stores the minimum loss value and its epoch index"""
def __init__(self, total_epoch):
self.reset(total_epoch)
def reset(self, total_epoch):
assert total_epoch > 0
self.total_epoch = total_epoch
self.current_epoch = 0
self.epoch_losses = np.zeros((self.total_epoch, 2),
dtype=np.float32) # [epoch, train/val]
self.epoch_losses = self.epoch_losses - 1
self.epoch_accuracy = np.zeros((self.total_epoch, 2),
dtype=np.float32) # [epoch, train/val]
self.epoch_accuracy = self.epoch_accuracy
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format(
self.total_epoch, idx)
self.epoch_losses[idx, 0] = train_loss
self.epoch_losses[idx, 1] = val_loss
self.epoch_accuracy[idx, 0] = train_acc
self.epoch_accuracy[idx, 1] = val_acc
self.current_epoch = idx + 1
# return self.max_accuracy(False) == val_acc
def max_accuracy(self, istrain):
if self.current_epoch <= 0: return 0
if istrain: return self.epoch_accuracy[:self.current_epoch, 0].max()
else: return self.epoch_accuracy[:self.current_epoch, 1].max()
def plot_curve(self, save_path):
title = 'the accuracy/loss curve of train/val'
dpi = 80
width, height = 1200, 800
legend_fontsize = 10
scale_distance = 48.8
figsize = width / float(dpi), height / float(dpi)
fig = plt.figure(figsize=figsize)
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
y_axis = np.zeros(self.total_epoch)
plt.xlim(0, self.total_epoch)
plt.ylim(0, 1)
interval_y = 0.05
interval_x = 5
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
plt.yticks(np.arange(0, 1 + interval_y, interval_y))
plt.grid()
plt.title(title, fontsize=20)
plt.xlabel('the training epoch', fontsize=16)
plt.ylabel('accuracy', fontsize=16)
y_axis[:] = self.epoch_accuracy[:, 0]
plt.plot(x_axis,
y_axis,
color='g',
linestyle='-',
label='train-accuracy',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_accuracy[:, 1]
plt.plot(x_axis,
y_axis,
color='y',
linestyle='-',
label='valid-accuracy',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 0]
plt.plot(x_axis,
y_axis * 50,
color='g',
linestyle=':',
label='train-loss-x50',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 1]
plt.plot(x_axis,
y_axis * 50,
color='y',
linestyle=':',
label='valid-loss-x50',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
if save_path is not None:
fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
print('---- save figure {} into {}'.format(title, save_path))
plt.close(fig)
def convert_secs2time(epoch_time):
need_hour = int(epoch_time / 3600)
need_mins = int((epoch_time - 3600 * need_hour) / 60)
need_secs = int(epoch_time - 3600 * need_hour - 60 * need_mins)
return need_hour, need_mins, need_secs
def time_file_str():
ISOTIMEFORMAT = '%Y-%m-%d'
string = '{}'.format(time.strftime(ISOTIMEFORMAT,
time.gmtime(time.time())))
return string + '-{}'.format(random.randint(1, 10000))
def adjust_learning_rate(optimizer, epoch, gammas, schedule, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
"Add by YU"
lr = args.lr
mu = args.momentum
if args.optimizer != "YF":
assert len(gammas) == len(
schedule), "length of gammas and schedule should be equal"
for (gamma, step) in zip(gammas, schedule):
if (epoch >= step):
lr = lr * gamma
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr
elif args.optimizer == "YF":
lr = optimizer._lr
mu = optimizer._mu
return lr, mu