-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdataset.py
433 lines (338 loc) · 12.2 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import numpy as np
import pdb
import torch
from torchvision import datasets
from torch.utils.data import Dataset
from PIL import Image
from torchvision import transforms
import os
import torchvision
def get_dataset(name, path):
if name.lower() == 'mnist':
return get_MNIST(path)
elif name.lower() == 'fashionmnist':
return get_FashionMNIST(path)
elif name.lower() == 'svhn':
return get_SVHN(path)
elif name.lower() == 'cifar10':
return get_CIFAR10(path)
elif name.lower() == 'cifar100':
return get_CIFAR100(path)
elif name.lower() == 'gtsrb':
return get_GTSRB(path)
elif name.lower() == 'tinyimagenet':
return get_tinyImageNet(path)
def get_ImageNet(path):
raw_tr = datasets.ImageFolder(path + '/tinyImageNet/tiny-imagenet-200/train')
imagenet_tr_path = path +'imagenet-object-localization-challenge/ILSVRC/Data/CLS-LOC/train/'
from torchvision import transforms
transform = transforms.Compose([transforms.Resize((64, 64))])
imagenet_folder = datasets.ImageFolder(imagenet_tr_path, transform=transform)
idx_to_class = {}
for (class_num, idx) in imagenet_folder.class_to_idx.items():
idx_to_class[idx] = class_num
X_tr,Y_tr = [], []
item_list = imagenet_folder.imgs
for (class_num, idx) in raw_tr.class_to_idx.items():
new_img_num = 0
for ii, (path, target) in enumerate(item_list):
if idx_to_class[target] == class_num:
X_tr.append(np.array(imagenet_folder[ii][0]))
Y_tr.append(idx)
new_img_num += 1
if new_img_num >= 250:
break
return np.array(X_tr), np.array(Y_tr)
def get_tinyImageNet(path):
# 100000 train 10000 test
raw_tr = datasets.ImageFolder(path + '/tinyImageNet/tiny-imagenet-200/train')
raw_te = datasets.ImageFolder(path + '/tinyImageNet/tiny-imagenet-200/val')
f = open(path + '/tinyImageNet/tiny-imagenet-200/val/val_annotations.txt')
val_dict = {}
for line in f.readlines():
val_dict[line.split()[0]] = raw_tr.class_to_idx[line.split()[1]]
X_tr,Y_tr,X_te, Y_te = [],[],[],[]
div_list = [len(raw_tr)*(x+1)//10 for x in range(10)] # can not load at once, memory limitation
i=0
for count in div_list:
loop = count - i
for j in range(loop):
image,target = raw_tr[i]
X_tr.append(np.array(image))
Y_tr.append(target)
i += 1
for i in range(len(raw_te)):
img, label = raw_te[i]
img_pth = raw_te.imgs[i][0].split('/')[-1]
X_te.append(np.array(img))
Y_te.append(val_dict[img_pth])
return X_tr,Y_tr,X_te, Y_te
# torch.tensor(X_tr), torch.tensor(Y_tr), torch.tensor(X_te), torch.tensor(Y_te)
def get_MNIST(path):
raw_tr = datasets.MNIST(path + '/mnist', train=True, download=True)
raw_te = datasets.MNIST(path + '/mnist', train=False, download=True)
X_tr = raw_tr.data
Y_tr = raw_tr.targets
X_te = raw_te.data
Y_te = raw_te.targets
return X_tr, Y_tr, X_te, Y_te
def get_FashionMNIST(path):
raw_tr = datasets.FashionMNIST(path + '/fashionmnist', train=True, download=True)
raw_te = datasets.FashionMNIST(path + '/fashionmnist', train=False, download=True)
X_tr = raw_tr.data
Y_tr = raw_tr.targets
X_te = raw_te.data
Y_te = raw_te.targets
return X_tr, Y_tr, X_te, Y_te
def get_SVHN(path):
data_tr = datasets.SVHN(path, split='train', download=True)
data_te = datasets.SVHN(path, split='test', download=True)
X_tr = data_tr.data
Y_tr = torch.from_numpy(data_tr.labels)
X_te = data_te.data
Y_te = torch.from_numpy(data_te.labels)
return X_tr, Y_tr, X_te, Y_te
def get_CIFAR10(path):
data_tr = datasets.CIFAR10(path + '/cifar10', train=True, download=True)
data_te = datasets.CIFAR10(path + '/cifar10', train=False, download=True)
X_tr = data_tr.data
# print(np.array(X_tr[0]).shape)
Y_tr = torch.from_numpy(np.array(data_tr.targets))
X_te = data_te.data
Y_te = torch.from_numpy(np.array(data_te.targets))
return X_tr, Y_tr, X_te, Y_te
def get_CIFAR100(path):
data_tr = datasets.CIFAR100(path + '/cifar100', train=True, download=True)
data_te = datasets.CIFAR100(path + '/cifar100', train=False, download=True)
X_tr = data_tr.data
Y_tr = torch.from_numpy(np.array(data_tr.targets))
X_te = data_te.data
Y_te = torch.from_numpy(np.array(data_te.targets))
return X_tr, Y_tr, X_te, Y_te
def get_GTSRB(path):
train_dir = os.path.join(path, 'gtsrb/train')
test_dir = os.path.join(path, 'gtsrb/test')
train_data = torchvision.datasets.ImageFolder(train_dir)
test_data = torchvision.datasets.ImageFolder(test_dir)
X_tr = np.array([np.asarray(datasets.folder.default_loader(s[0])) for s in train_data.samples])
Y_tr = torch.from_numpy(np.array(train_data.targets))
X_te = np.array([np.asarray(datasets.folder.default_loader(s[0])) for s in test_data.samples])
Y_te = torch.from_numpy(np.array(test_data.targets))
return X_tr, Y_tr, X_te, Y_te
def get_handler(name):
if name.lower() == 'mnist':
return DataHandler1
elif name.lower() == 'fashionmnist':
return DataHandler1
elif name.lower() == 'svhn':
return DataHandler2
elif name.lower() == 'cifar10':
return DataHandler3
elif name.lower() == 'cifar100':
return DataHandler3
elif name.lower() == 'gtsrb':
return DataHandler3
elif name.lower() == 'tinyimagenet':
return DataHandler3
else:
return DataHandler4
class DataHandler1(Dataset):
def __init__(self, X, Y, transform=None):
self.X = X
self.Y = Y
self.transform = transform
def __getitem__(self, index):
x, y = self.X[index], self.Y[index]
if self.transform is not None:
x = x.numpy() if not isinstance(x, np.ndarray) else x
x = Image.fromarray(x, mode='L')
x = self.transform(x)
return x, y, index
def __len__(self):
return len(self.X)
class DataHandler2(Dataset):
def __init__(self, X, Y, transform=None):
self.X = X
self.Y = Y
self.transform = transform
def __getitem__(self, index):
x, y = self.X[index], self.Y[index]
if self.transform is not None:
x = Image.fromarray(np.transpose(x, (1, 2, 0)))
x = self.transform(x)
return x, y, index
def __len__(self):
return len(self.X)
class DataHandler3(Dataset):
def __init__(self, X, Y, transform=None):
self.X = X
self.Y = Y
self.transform = transform
def __getitem__(self, index):
x, y = self.X[index], self.Y[index]
if self.transform is not None:
x = Image.fromarray(x)
x = self.transform(x)
return x, y, index
def __len__(self):
return len(self.X)
class DataHandler4(Dataset):
def __init__(self, X, Y, transform=None):
self.X = X
self.Y = Y
self.transform = transform
def __getitem__(self, index):
x, y = self.X[index], self.Y[index]
return x, y, index
def __len__(self):
return len(self.X)
# handler for waal
def get_wa_handler(name):
if name.lower() == 'fashionmnist':
return Wa_datahandler1
elif name.lower() == 'svhn':
return Wa_datahandler2
elif name.lower() == 'cifar10':
return Wa_datahandler3
elif name.lower() == 'cifar100':
return Wa_datahandler3
elif name.lower() == 'tinyimagenet':
return Wa_datahandler3
elif name.lower() == 'mnist':
return Wa_datahandler1
elif name.lower() == 'gtsrb':
return Wa_datahandler3
class Wa_datahandler1(Dataset):
def __init__(self,X_1, Y_1, X_2, Y_2, transform = None):
"""
:param X_1: covariate from the first distribution
:param Y_1: label from the first distribution
:param X_2:
:param Y_2:
:param transform:
"""
self.X1 = X_1
self.Y1 = Y_1
self.X2 = X_2
self.Y2 = Y_2
self.transform = transform
def __len__(self):
# returning the minimum length of two data-sets
return max(len(self.X1),len(self.X2))
def __getitem__(self, index):
Len1 = len(self.Y1)
Len2 = len(self.Y2)
# checking the index in the range or not
if index < Len1:
x_1 = self.X1[index]
y_1 = self.Y1[index]
else:
# rescaling the index to the range of Len1
re_index = index % Len1
x_1 = self.X1[re_index]
y_1 = self.Y1[re_index]
# checking second datasets
if index < Len2:
x_2 = self.X2[index]
y_2 = self.Y2[index]
else:
# rescaling the index to the range of Len2
re_index = index % Len2
x_2 = self.X2[re_index]
y_2 = self.Y2[re_index]
if self.transform is not None:
# print (x_1)
x_1 = Image.fromarray(x_1, mode='L')
x_1 = self.transform(x_1)
x_2 = Image.fromarray(x_2, mode='L')
x_2 = self.transform(x_2)
return index,x_1,y_1,x_2,y_2
class Wa_datahandler2(Dataset):
def __init__(self,X_1, Y_1, X_2, Y_2, transform = None):
"""
:param X_1: covariate from the first distribution
:param Y_1: label from the first distribution
:param X_2:
:param Y_2:
:param transform:
"""
self.X1 = X_1
self.Y1 = Y_1
self.X2 = X_2
self.Y2 = Y_2
self.transform = transform
def __len__(self):
# returning the minimum length of two data-sets
return max(len(self.X1),len(self.X2))
def __getitem__(self, index):
Len1 = len(self.Y1)
Len2 = len(self.Y2)
# checking the index in the range or not
if index < Len1:
x_1 = self.X1[index]
y_1 = self.Y1[index]
else:
# rescaling the index to the range of Len1
re_index = index % Len1
x_1 = self.X1[re_index]
y_1 = self.Y1[re_index]
# checking second datasets
if index < Len2:
x_2 = self.X2[index]
y_2 = self.Y2[index]
else:
# rescaling the index to the range of Len2
re_index = index % Len2
x_2 = self.X2[re_index]
y_2 = self.Y2[re_index]
if self.transform is not None:
x_1 = Image.fromarray(np.transpose(x_1, (1, 2, 0)))
x_1 = self.transform(x_1)
x_2 = Image.fromarray(np.transpose(x_2, (1, 2, 0)))
x_2 = self.transform(x_2)
return index,x_1,y_1,x_2,y_2
class Wa_datahandler3(Dataset):
def __init__(self,X_1, Y_1, X_2, Y_2, transform = None):
"""
:param X_1: covariate from the first distribution
:param Y_1: label from the first distribution
:param X_2:
:param Y_2:
:param transform:
"""
self.X1 = X_1
self.Y1 = Y_1
self.X2 = X_2
self.Y2 = Y_2
self.transform = transform
def __len__(self):
# returning the minimum length of two data-sets
return max(len(self.X1),len(self.X2))
def __getitem__(self, index):
Len1 = len(self.Y1)
Len2 = len(self.Y2)
# checking the index in the range or not
if index < Len1:
x_1 = self.X1[index]
y_1 = self.Y1[index]
else:
# rescaling the index to the range of Len1
re_index = index % Len1
x_1 = self.X1[re_index]
y_1 = self.Y1[re_index]
# checking second datasets
if index < Len2:
x_2 = self.X2[index]
y_2 = self.Y2[index]
else:
# rescaling the index to the range of Len2
re_index = index % Len2
x_2 = self.X2[re_index]
y_2 = self.Y2[re_index]
if self.transform is not None:
x_1 = Image.fromarray(x_1)
x_1 = self.transform(x_1)
x_2 = Image.fromarray(x_2)
x_2 = self.transform(x_2)
return index,x_1,y_1,x_2,y_2
# get_CIFAR10('./dataset')