-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwhiten.lua
87 lines (73 loc) · 3.87 KB
/
whiten.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
----------------------------------------------------------------------
-- Author : Jonghoon Jin, Aysegul Dundar
-- Option for whitening
-- Whitening is only available for the first layer with this code
----------------------------------------------------------------------
require 'unsup'
function zca_whiten(x) -- zca whitening is used
local dims = x:size() -- outputs are whitened data(x),
local nsamples = dims[1] -- M, P statistic (matrix)
local ndims = dims[2]
local M = torch.mean(x, 1)
local D, V = unsup.pcacov(x)
x:add(torch.ger(torch.ones(nsamples), M:squeeze()):mul(-1))
local diag = torch.diag(D:add(0.1):sqrt():pow(-1))
local P = V * diag * V:t()
x = x * P
return x, M, P
end
function whiten_image(data, M, P, is) -- operation: data = (data - M) x P
-- from 2D image to a list of 1D patches
local npatches = (32-is)+1
local x = torch.zeros(npatches*npatches, 3*is*is)
local m = 1
for j = 1, npatches-1 do
for k = 1, npatches-1 do
-- slice 32x32 image (ignore 1px border) into 36 patches of 5x5
x[{m}] = data[{{1},{},{j,j+is-1},{k,k+is-1}}]:reshape(3*is*is) --{((i-1)*6+(j-1))*6+k}
m = m+1
end
end
-- do whitening
x:add(torch.ger(torch.ones(npatches*npatches), M:squeeze()):mul(-1))
x = x * P
data2 = torch.zeros(3, npatches*is, npatches*is)
local m =1
-- from the list of 1D patches to 2D image
for j = 1, npatches-1 do
for k = 1, npatches-1 do
local xi = 1 + (k-1)*is
local yi = 1 + (j-1)*is
data2[{{}, {yi,yi+is-1},{xi,xi+is-1}}] = x[{m}]:reshape(3,is,is)
m = m+1
end
end
return data2
end
function whitenprocessLayer(network, traindata, testdata, M, P, verbose)
data = whiten_image(traindata[{{1}, {}, {}, {}}], M, P, is1)
a = network:forward(data)
local train_out = torch.Tensor(traindata:size(1), a:size(1), a:size(2), a:size(3))
local test_out = torch.Tensor(testdata:size(1), a:size(1), a:size(2), a:size(3))
for i = 1, traindata:size(1) do
data = whiten_image(traindata[{{i}, {}, {}, {}}], M, P, is1)
train_out[i] = network:forward(data)
xlua.progress(i, traindata:size(1))
end
for i = 1, testdata:size(1) do
data = whiten_image(testdata[{{i}, {}, {}, {}}], M, P, is1)
test_out[i] = network:forward(data)
xlua.progress(i, testdata:size(1))
end
-- Normalize the output
for i=1, train_out:size(2) do
-- normalize each channel globally:
mean = train_out[{ {},i,{},{} }]:mean()
std = train_out[{ {},i,{},{} }]:std()
train_out[{ {},i,{},{} }]:add(-mean)
train_out[{ {},i,{},{} }]:div(std)
test_out[{ {},i,{},{} }]:add(-mean)
test_out[{ {},i,{},{} }]:div(std)
end
return train_out, test_out
end