-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathutils.py
72 lines (57 loc) · 1.75 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import os.path as osp
import shutil
import numpy as np
import scipy.sparse as sp
import torch
def ensure_path(path):
if osp.exists(path):
if input('{} exists, remove? ([y]/n)'.format(path)) != 'n':
shutil.rmtree(path)
os.mkdir(path)
else:
os.mkdir(path)
def set_gpu(gpu):
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
print('using gpu {}'.format(gpu))
def pick_vectors(dic, wnids, is_tensor=False):
o = next(iter(dic.values()))
dim = len(o)
ret = []
for wnid in wnids:
v = dic.get(wnid)
if v is None:
if not is_tensor:
v = [0] * dim
else:
v = torch.zeros(dim)
ret.append(v)
if not is_tensor:
return torch.FloatTensor(ret)
else:
return torch.stack(ret)
def l2_loss(a, b):
return ((a - b)**2).sum() / (len(a) * 2)
def normt_spm(mx, method='in'):
if method == 'in':
mx = mx.transpose()
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
if method == 'sym':
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -0.5).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = mx.dot(r_mat_inv).transpose().dot(r_mat_inv)
return mx
def spm_to_tensor(sparse_mx):
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(np.vstack(
(sparse_mx.row, sparse_mx.col))).long().cuda()
values = torch.from_numpy(sparse_mx.data).cuda()
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)