-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
59 lines (49 loc) · 1.88 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from torch.utils.data import Dataset
from utils import normalize_word
import torch
class MyDataset(Dataset):
def __init__(self, file_path, word_vocab, label_vocab, alphabet, number_normalized):
self.word_vocab = word_vocab
self.label_vocab = label_vocab
self.alphabet = alphabet
self.number_normalized = number_normalized
texts, labels = [], []
text, label = [], []
with open(file_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
if len(line) > 2:
pairs = line.strip().split()
word = pairs[0]
if self.number_normalized:
word = normalize_word(word)
text.append(word)
label.append(pairs[-1])
else:
if len(text) > 0:
texts.append(text)
labels.append(label)
text, label = [], []
self.texts = texts
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, item):
text_id = []
label_id = []
text = self.texts[item]
label = self.labels[item]
seq_char_list = list()
for word in text:
text_id.append(self.word_vocab.word_to_id(word))
text_tensor = torch.tensor(text_id).long()
for label_ele in label:
label_id.append(self.label_vocab.label_to_id(label_ele))
label_tensor = torch.tensor(label_id).long()
for word in text:
char_list = list(word)
char_id = list()
for char in char_list:
char_id.append(self.alphabet.char_to_id(char))
seq_char_list.append(char_id)
return {'text': text_tensor, 'label': label_tensor, 'char': seq_char_list}