forked from CMU-CBML/RDCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
141 lines (116 loc) · 4.94 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
from torch.utils import data
import os
import glob
import pandas as pd
import numpy as np
import h5py
import re
import sys
def read_files_array(filename):
# row_data = np.loadtxt(filename)
# matrix = np.resize(row_data[:,2],(21,21))
row_data = pd.read_csv(filename,sep=' ', header=None)
row_data = row_data.iloc[0:,2].values
matrix = row_data.astype('float').reshape(21,21)
return matrix
class H5Dataset_new(data.Dataset):
def __init__(self, path):
super(H5Dataset_new, self).__init__()
self.file_path =path
self.data = None
self.target = None
with h5py.File(self.file_path, 'r') as file:
self.dataset_len = len(file["input"])
def __getitem__(self, index):
if self.data is None:
self.data = h5py.File(self.file_path, 'r')["input"]
if self.target is None:
self.target = h5py.File(self.file_path, 'r')["output"]
return (torch.from_numpy(self.data[index,:,:,:]).float(),
torch.from_numpy(self.target[index,:,:,:]).float())
def __len__(self):
return self.dataset_len
class H5Dataset(data.Dataset):
def __init__(self, file_path):
super(H5Dataset, self).__init__()
h5_file = h5py.File(file_path, 'r', swmr = True)
self.data = h5_file.get('input')
self.target = h5_file.get('output')
def __getitem__(self, index):
return (torch.from_numpy(self.data[index,:,:,:]).float(),
torch.from_numpy(self.target[index,:,:,:]).float())
def __len__(self):
return self.data.shape[0]
class rdDataset(data.Dataset):
'Characterizes a dataset for PyTorch'
def __init__(self, path_data):
'Initialization'
self.path_data = path_data
self.filename_output_all = glob.glob(path_data + '/output/*.txt')
self.para = pd.read_csv(path_data + '/dataset_DKtGeo.txt', sep="\t", header=None).values
# self.para = self.para.rename(columns = {0:'file_num',1:'D',2:'K',3:'T',4:'U0',5:'U1',6:'U2',7:'U3',8:'Geo', 9:'ParaSet'})
def __len__(self):
'Denotes the total number of samples'
return len(self.para)
def __getitem__(self, index):
'Generates one sample of data'
# Select sample
# Load data and get label
file_num = self.para[index,0]
t = self.para[index,3]
k = self.para[index,2]
d = self.para[index,1]
# u0 = self.para.loc[index]['U0']
# u1 = self.para.loc[index]['U1']
# u2 = self.para.loc[index]['U2']
# u3 = self.para.loc[index]['U3']
geo = self.para[index,8]
paraset = self.para[index,9]
filename_output = self.path_data + "/output/mesh_"+str(int(file_num))+".txt"
matrix_input = torch.zeros([4,21,21], dtype = torch.float)
filename_input = self.path_data + "/input/geometry_"+str(int(geo))+ "_" +str(int(paraset)) + "_input.txt"
matrix_input[0] = torch.from_numpy(read_files_array(filename_input))
matrix_input[1] = t
matrix_input[2] = k
matrix_input[3] = d
matrix_output = torch.zeros([1,21,21], dtype = torch.float)
matrix_output = torch.from_numpy(read_files_array(filename_output))
# matrix_output.resize(1, 21, 21)
return matrix_input, matrix_output
class rdDataset_old(data.Dataset):
'Characterizes a dataset for PyTorch'
def __init__(self, path_data):
'Initialization'
self.path_data = path_data
self.filename_output_all = glob.glob(path_data + '/output/*.txt')
self.para = pd.read_csv(path_data + '/dataset_DKtGeo.txt', sep="\t", header=None)
self.para = self.para.rename(columns = {0:'file_num',1:'D',2:'K',3:'T',4:'U0',5:'U1',6:'U2',7:'U3',8:'Geo'})
def __len__(self):
'Denotes the total number of samples'
return len(self.para)
def __getitem__(self, index):
'Generates one sample of data'
# Select sample
# Load data and get label
file_num = self.para.loc[index]['file_num']
t = self.para.loc[index]['T']
k = self.para.loc[index]['K']
d = self.para.loc[index]['D']
# u0 = self.para.loc[index]['U0']
# u1 = self.para.loc[index]['U1']
# u2 = self.para.loc[index]['U2']
# u3 = self.para.loc[index]['U3']
geo = self.para.loc[index]['Geo']
# paraset = self.para.loc[index]['ParaSet']
filename_output = self.path_data + "/output/mesh_"+str(int(file_num))+".txt"
matrix_input = np.array([])
matrix_input.resize((4, 21, 21))
filename_input = self.path_data + "/input/geometry_"+str(int(geo))+ "_input.txt"
matrix_input[0] = read_files_array(filename_input)
matrix_input[1] = t
matrix_input[2] = k
matrix_input[3] = d
matrix_output = read_files_array(filename_output)
matrix_output.resize(1, 21, 21)
return matrix_input, matrix_output