forked from Robinwho/LearnPython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
python_thread_multiprocess.py
115 lines (97 loc) · 3.35 KB
/
python_thread_multiprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# _*_ coding: utf-8 _*_
"""
python_thread_multiprocee.py by xianhu
"""
import time
import threading
import multiprocessing
# 定义全局变量Queue
g_queue = multiprocessing.Queue()
g_search_list = list(range(10000))
# 定义一个IO密集型任务:利用time.sleep()
def task_io(task_id):
print("IOTask[%s] start" % task_id)
while not g_queue.empty():
time.sleep(1)
try:
data = g_queue.get(block=True, timeout=1)
print("IOTask[%s] get data: %s" % (task_id, data))
except Exception as excep:
print("IOTask[%s] error: %s" % (task_id, str(excep)))
print("IOTask[%s] end" % task_id)
return
# 定义一个计算密集型任务:利用一些复杂加减乘除、列表查找等
def task_cpu(task_id):
print("CPUTask[%s] start" % task_id)
while not g_queue.empty():
count = 0
for i in range(10000):
count += pow(3*2, 3*2) if i in g_search_list else 0
try:
data = g_queue.get(block=True, timeout=1)
print("CPUTask[%s] get data: %s" % (task_id, data))
except Exception as excep:
print("CPUTask[%s] error: %s" % (task_id, str(excep)))
print("CPUTask[%s] end" % task_id)
return task_id
def init_queue():
print("init g_queue start")
while not g_queue.empty():
g_queue.get()
for _index in range(10):
g_queue.put(_index)
print("init g_queue end")
return
if __name__ == '__main__':
print("cpu count:", multiprocessing.cpu_count(), "\n")
print("========== 直接执行IO密集型任务 ==========")
init_queue()
time_0 = time.time()
task_io(0)
print("结束:", time.time() - time_0, "\n")
print("========== 多线程执行IO密集型任务 ==========")
init_queue()
time_0 = time.time()
thread_list = [threading.Thread(target=task_io, args=(i,)) for i in range(5)]
for t in thread_list:
t.start()
for t in thread_list:
if t.is_alive():
t.join()
print("结束:", time.time() - time_0, "\n")
print("========== 多进程执行IO密集型任务 ==========")
init_queue()
time_0 = time.time()
process_list = [multiprocessing.Process(target=task_io, args=(i,)) for i in range(multiprocessing.cpu_count())]
for p in process_list:
p.start()
for p in process_list:
if p.is_alive():
p.join()
print("结束:", time.time() - time_0, "\n")
print("========== 直接执行CPU密集型任务 ==========")
init_queue()
time_0 = time.time()
task_cpu(0)
print("结束:", time.time() - time_0, "\n")
print("========== 多线程执行CPU密集型任务 ==========")
init_queue()
time_0 = time.time()
thread_list = [threading.Thread(target=task_cpu, args=(i,)) for i in range(5)]
for t in thread_list:
t.start()
for t in thread_list:
if t.is_alive():
t.join()
print("结束:", time.time() - time_0, "\n")
print("========== 多进程执行cpu密集型任务 ==========")
init_queue()
time_0 = time.time()
process_list = [multiprocessing.Process(target=task_cpu, args=(i,)) for i in range(multiprocessing.cpu_count())]
for p in process_list:
p.start()
for p in process_list:
if p.is_alive():
p.join()
print("结束:", time.time() - time_0, "\n")
exit()