forked from Robinwho/LearnPython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
python_lda.py
733 lines (611 loc) · 27.6 KB
/
python_lda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
# _*_ coding: utf-8 _*_
"""
python_lda.py by xianhu
"""
import os
import numpy
import logging
from collections import defaultdict
# 全局变量
MAX_ITER_NUM = 10000 # 最大迭代次数
VAR_NUM = 20 # 自动计算迭代次数时,计算方差的区间大小
class BiDictionary(object):
"""
定义双向字典,通过key可以得到value,通过value也可以得到key
"""
def __init__(self):
"""
:key: 双向字典初始化
"""
self.dict = {} # 正向的数据字典,其key为self的key
self.dict_reversed = {} # 反向的数据字典,其key为self的value
return
def __len__(self):
"""
:key: 获取双向字典的长度
"""
return len(self.dict)
def __str__(self):
"""
:key: 将双向字典转化为字符串对象
"""
str_list = ["%s\t%s" % (key, self.dict[key]) for key in self.dict]
return "\n".join(str_list)
def clear(self):
"""
:key: 清空双向字典对象
"""
self.dict.clear()
self.dict_reversed.clear()
return
def add_key_value(self, key, value):
"""
:key: 更新双向字典,增加一项
"""
self.dict[key] = value
self.dict_reversed[value] = key
return
def remove_key_value(self, key, value):
"""
:key: 更新双向字典,删除一项
"""
if key in self.dict:
del self.dict[key]
del self.dict_reversed[value]
return
def get_value(self, key, default=None):
"""
:key: 通过key获取value,不存在返回default
"""
return self.dict.get(key, default)
def get_key(self, value, default=None):
"""
:key: 通过value获取key,不存在返回default
"""
return self.dict_reversed.get(value, default)
def contains_key(self, key):
"""
:key: 判断是否存在key值
"""
return key in self.dict
def contains_value(self, value):
"""
:key: 判断是否存在value值
"""
return value in self.dict_reversed
def keys(self):
"""
:key: 得到双向字典全部的keys
"""
return self.dict.keys()
def values(self):
"""
:key: 得到双向字典全部的values
"""
return self.dict_reversed.keys()
def items(self):
"""
:key: 得到双向字典全部的items
"""
return self.dict.items()
class CorpusSet(object):
"""
定义语料集类,作为LdaBase的基类
"""
def __init__(self):
"""
:key: 初始化函数
"""
# 定义关于word的变量
self.local_bi = BiDictionary() # id和word之间的本地双向字典,key为id,value为word
self.words_count = 0 # 数据集中word的数量(排重之前的)
self.V = 0 # 数据集中word的数量(排重之后的)
# 定义关于article的变量
self.artids_list = [] # 全部article的id的列表,按照数据读取的顺序存储
self.arts_Z = [] # 全部article中所有词的id信息,维数为 M * art.length()
self.M = 0 # 数据集中article的数量
# 定义推断中用到的变量(可能为空)
self.global_bi = None # id和word之间的全局双向字典,key为id,value为word
self.local_2_global = {} # 一个字典,local字典和global字典之间的对应关系
return
def init_corpus_with_file(self, file_name):
"""
:key: 利用数据文件初始化语料集数据。文件每一行的数据格式: id[tab]word1 word2 word3......
"""
with open(file_name, "r", encoding="utf-8") as file_iter:
self.init_corpus_with_articles(file_iter)
return
def init_corpus_with_articles(self, article_list):
"""
:key: 利用article的列表初始化语料集。每一篇article的格式为: id[tab]word1 word2 word3......
"""
# 清理数据--word数据
self.local_bi.clear()
self.words_count = 0
self.V = 0
# 清理数据--article数据
self.artids_list.clear()
self.arts_Z.clear()
self.M = 0
# 清理数据--清理local到global的映射关系
self.local_2_global.clear()
# 读取article数据
for line in article_list:
frags = line.strip().split()
if len(frags) < 2:
continue
# 获取article的id
art_id = frags[0].strip()
# 获取word的id
art_wordid_list = []
for word in [w.strip() for w in frags[1:] if w.strip()]:
local_id = self.local_bi.get_key(word) if self.local_bi.contains_value(word) else len(self.local_bi)
# 这里的self.global_bi为None和为空是有区别的
if self.global_bi is None:
# 更新id信息
self.local_bi.add_key_value(local_id, word)
art_wordid_list.append(local_id)
else:
if self.global_bi.contains_value(word):
# 更新id信息
self.local_bi.add_key_value(local_id, word)
art_wordid_list.append(local_id)
# 更新local_2_global
self.local_2_global[local_id] = self.global_bi.get_key(word)
# 更新类变量: 必须article中word的数量大于0
if len(art_wordid_list) > 0:
self.words_count += len(art_wordid_list)
self.artids_list.append(art_id)
self.arts_Z.append(art_wordid_list)
# 做相关初始计算--word相关
self.V = len(self.local_bi)
logging.debug("words number: " + str(self.V) + ", " + str(self.words_count))
# 做相关初始计算--article相关
self.M = len(self.artids_list)
logging.debug("articles number: " + str(self.M))
return
def save_wordmap(self, file_name):
"""
:key: 保存word字典,即self.local_bi的数据
"""
with open(file_name, "w", encoding="utf-8") as f_save:
f_save.write(str(self.local_bi))
return
def load_wordmap(self, file_name):
"""
:key: 加载word字典,即加载self.local_bi的数据
"""
self.local_bi.clear()
with open(file_name, "r", encoding="utf-8") as f_load:
for _id, _word in [line.strip().split() for line in f_load if line.strip()]:
self.local_bi.add_key_value(int(_id), _word.strip())
self.V = len(self.local_bi)
return
class LdaBase(CorpusSet):
"""
LDA模型的基类,相关说明:
》article的下标范围为[0, self.M), 下标为 m
》wordid的下标范围为[0, self.V), 下标为 w
》topic的下标范围为[0, self.K), 下标为 k 或 topic
》article中word的下标范围为[0, article.size()), 下标为 n
"""
def __init__(self):
"""
:key: 初始化函数
"""
CorpusSet.__init__(self)
# 基础变量--1
self.dir_path = "" # 文件夹路径,用于存放LDA运行的数据、中间结果等
self.model_name = "" # LDA训练或推断的模型名称,也用于读取训练的结果
self.current_iter = 0 # LDA训练或推断的模型已经迭代的次数,用于继续模型训练过程
self.iters_num = 0 # LDA训练或推断过程中Gibbs抽样迭代的总次数,整数值或者"auto"
self.topics_num = 0 # LDA训练或推断过程中的topic的数量,即self.K值
self.K = 0 # LDA训练或推断过程中的topic的数量,即self.topics_num值
self.twords_num = 0 # LDA训练或推断结束后输出与每个topic相关的word的个数
# 基础变量--2
self.alpha = numpy.zeros(self.K) # 超参数alpha,K维的float值,默认为50/K
self.beta = numpy.zeros(self.V) # 超参数beta,V维的float值,默认为0.01
# 基础变量--3
self.Z = [] # 所有word的topic信息,即Z(m, n),维数为 M * article.size()
# 统计计数(可由self.Z计算得到)
self.nd = numpy.zeros((self.M, self.K)) # nd[m, k]用于保存第m篇article中第k个topic产生的词的个数,其维数为 M * K
self.ndsum = numpy.zeros((self.M, 1)) # ndsum[m, 0]用于保存第m篇article的总词数,维数为 M * 1
self.nw = numpy.zeros((self.K, self.V)) # nw[k, w]用于保存第k个topic产生的词中第w个词的数量,其维数为 K * V
self.nwsum = numpy.zeros((self.K, 1)) # nwsum[k, 0]用于保存第k个topic产生的词的总数,维数为 K * 1
# 多项式分布参数变量
self.theta = numpy.zeros((self.M, self.K)) # Doc-Topic多项式分布的参数,维数为 M * K,由alpha值影响
self.phi = numpy.zeros((self.K, self.V)) # Topic-Word多项式分布的参数,维数为 K * V,由beta值影响
# 辅助变量,目的是提高算法执行效率
self.sum_alpha = 0.0 # 超参数alpha的和
self.sum_beta = 0.0 # 超参数beta的和
# 先验知识,格式为{word_id: [k1, k2, ...], ...}
self.prior_word = defaultdict(list)
# 推断时需要的训练模型
self.train_model = None
return
# --------------------------------------------------辅助函数---------------------------------------------------------
def init_statistics_document(self):
"""
:key: 初始化关于article的统计计数。先决条件: self.M, self.K, self.Z
"""
assert self.M > 0 and self.K > 0 and self.Z
# 统计计数初始化
self.nd = numpy.zeros((self.M, self.K), dtype=numpy.int)
self.ndsum = numpy.zeros((self.M, 1), dtype=numpy.int)
# 根据self.Z进行更新,更新self.nd[m, k]和self.ndsum[m, 0]
for m in range(self.M):
for k in self.Z[m]:
self.nd[m, k] += 1
self.ndsum[m, 0] = len(self.Z[m])
return
def init_statistics_word(self):
"""
:key: 初始化关于word的统计计数。先决条件: self.V, self.K, self.Z, self.arts_Z
"""
assert self.V > 0 and self.K > 0 and self.Z and self.arts_Z
# 统计计数初始化
self.nw = numpy.zeros((self.K, self.V), dtype=numpy.int)
self.nwsum = numpy.zeros((self.K, 1), dtype=numpy.int)
# 根据self.Z进行更新,更新self.nw[k, w]和self.nwsum[k, 0]
for m in range(self.M):
for k, w in zip(self.Z[m], self.arts_Z[m]):
self.nw[k, w] += 1
self.nwsum[k, 0] += 1
return
def init_statistics(self):
"""
:key: 初始化全部的统计计数。上两个函数的综合函数。
"""
self.init_statistics_document()
self.init_statistics_word()
return
def sum_alpha_beta(self):
"""
:key: 计算alpha、beta的和
"""
self.sum_alpha = self.alpha.sum()
self.sum_beta = self.beta.sum()
return
def calculate_theta(self):
"""
:key: 初始化并计算模型的theta值(M*K),用到alpha值
"""
assert self.sum_alpha > 0
self.theta = (self.nd + self.alpha) / (self.ndsum + self.sum_alpha)
return
def calculate_phi(self):
"""
:key: 初始化并计算模型的phi值(K*V),用到beta值
"""
assert self.sum_beta > 0
self.phi = (self.nw + self.beta) / (self.nwsum + self.sum_beta)
return
# ---------------------------------------------计算Perplexity值------------------------------------------------------
def calculate_perplexity(self):
"""
:key: 计算Perplexity值,并返回
"""
# 计算theta和phi值
self.calculate_theta()
self.calculate_phi()
# 开始计算
preplexity = 0.0
for m in range(self.M):
for w in self.arts_Z[m]:
preplexity += numpy.log(numpy.sum(self.theta[m] * self.phi[:, w]))
return numpy.exp(-(preplexity / self.words_count))
# --------------------------------------------------静态函数---------------------------------------------------------
@staticmethod
def multinomial_sample(pro_list):
"""
:key: 静态函数,多项式分布抽样,此时会改变pro_list的值
:param pro_list: [0.2, 0.7, 0.4, 0.1],此时说明返回下标1的可能性大,但也不绝对
"""
# 将pro_list进行累加
for k in range(1, len(pro_list)):
pro_list[k] += pro_list[k-1]
# 确定随机数 u 落在哪个下标值,此时的下标值即为抽取的类别(random.rand()返回: [0, 1.0))
u = numpy.random.rand() * pro_list[-1]
return_index = len(pro_list) - 1
for t in range(len(pro_list)):
if pro_list[t] > u:
return_index = t
break
return return_index
# ----------------------------------------------Gibbs抽样算法--------------------------------------------------------
def gibbs_sampling(self, is_calculate_preplexity):
"""
:key: LDA模型中的Gibbs抽样过程
:param is_calculate_preplexity: 是否计算preplexity值
"""
# 计算preplexity值用到的变量
pp_list = []
pp_var = numpy.inf
# 开始迭代
last_iter = self.current_iter + 1
iters_num = self.iters_num if self.iters_num != "auto" else MAX_ITER_NUM
for self.current_iter in range(last_iter, last_iter+iters_num):
info = "......"
# 是否计算preplexity值
if is_calculate_preplexity:
pp = self.calculate_perplexity()
pp_list.append(pp)
# 计算列表最新VAR_NUM项的方差
pp_var = numpy.var(pp_list[-VAR_NUM:]) if len(pp_list) >= VAR_NUM else numpy.inf
info = (", preplexity: " + str(pp)) + ((", var: " + str(pp_var)) if len(pp_list) >= VAR_NUM else "")
# 输出Debug信息
logging.debug("\titeration " + str(self.current_iter) + info)
# 判断是否跳出循环
if self.iters_num == "auto" and pp_var < (VAR_NUM / 2):
break
# 对每篇article的每个word进行一次抽样,抽取合适的k值
for m in range(self.M):
for n in range(len(self.Z[m])):
w = self.arts_Z[m][n]
k = self.Z[m][n]
# 统计计数减一
self.nd[m, k] -= 1
self.ndsum[m, 0] -= 1
self.nw[k, w] -= 1
self.nwsum[k, 0] -= 1
if self.prior_word and (w in self.prior_word):
# 带有先验知识,否则进行正常抽样
k = numpy.random.choice(self.prior_word[w])
else:
# 计算theta值--下边的过程为抽取第m篇article的第n个词w的topic,即新的k
theta_p = (self.nd[m] + self.alpha) / (self.ndsum[m, 0] + self.sum_alpha)
# 计算phi值--判断是训练模型,还是推断模型(注意self.beta[w_g])
if self.local_2_global and self.train_model:
w_g = self.local_2_global[w]
phi_p = (self.train_model.nw[:, w_g] + self.nw[:, w] + self.beta[w_g]) / \
(self.train_model.nwsum[:, 0] + self.nwsum[:, 0] + self.sum_beta)
else:
phi_p = (self.nw[:, w] + self.beta[w]) / (self.nwsum[:, 0] + self.sum_beta)
# multi_p为多项式分布的参数,此时没有进行标准化
multi_p = theta_p * phi_p
# 此时的topic即为Gibbs抽样得到的topic,它有较大的概率命中多项式概率大的topic
k = LdaBase.multinomial_sample(multi_p)
# 统计计数加一
self.nd[m, k] += 1
self.ndsum[m, 0] += 1
self.nw[k, w] += 1
self.nwsum[k, 0] += 1
# 更新Z值
self.Z[m][n] = k
# 抽样完毕
return
# -----------------------------------------Model数据存储、读取相关函数-------------------------------------------------
def save_parameter(self, file_name):
"""
:key: 保存模型相关参数数据,包括: topics_num, M, V, K, words_count, alpha, beta
"""
with open(file_name, "w", encoding="utf-8") as f_param:
for item in ["topics_num", "M", "V", "K", "words_count"]:
f_param.write("%s\t%s\n" % (item, str(self.__dict__[item])))
f_param.write("alpha\t%s\n" % ",".join([str(item) for item in self.alpha]))
f_param.write("beta\t%s\n" % ",".join([str(item) for item in self.beta]))
return
def load_parameter(self, file_name):
"""
:key: 加载模型相关参数数据,和上一个函数相对应
"""
with open(file_name, "r", encoding="utf-8") as f_param:
for line in f_param:
key, value = line.strip().split()
if key in ["topics_num", "M", "V", "K", "words_count"]:
self.__dict__[key] = int(value)
elif key in ["alpha", "beta"]:
self.__dict__[key] = numpy.array([float(item) for item in value.split(",")])
return
def save_zvalue(self, file_name):
"""
:key: 保存模型关于article的变量,包括: arts_Z, Z, artids_list等
"""
with open(file_name, "w", encoding="utf-8") as f_zvalue:
for m in range(self.M):
out_line = [str(w) + ":" + str(k) for w, k in zip(self.arts_Z[m], self.Z[m])]
f_zvalue.write(self.artids_list[m] + "\t" + " ".join(out_line) + "\n")
return
def load_zvalue(self, file_name):
"""
:key: 读取模型的Z变量。和上一个函数相对应
"""
self.arts_Z = []
self.artids_list = []
self.Z = []
with open(file_name, "r", encoding="utf-8") as f_zvalue:
for line in f_zvalue:
frags = line.strip().split()
art_id = frags[0].strip()
w_k_list = [value.split(":") for value in frags[1:]]
# 添加到类中
self.artids_list.append(art_id)
self.arts_Z.append([int(item[0]) for item in w_k_list])
self.Z.append([int(item[1]) for item in w_k_list])
return
def save_twords(self, file_name):
"""
:key: 保存模型的twords数据,要用到phi的数据
"""
self.calculate_phi()
out_num = self.V if self.twords_num > self.V else self.twords_num
with open(file_name, "w", encoding="utf-8") as f_twords:
for k in range(self.K):
words_list = sorted([(w, self.phi[k, w]) for w in range(self.V)], key=lambda x: x[1], reverse=True)
f_twords.write("Topic %dth:\n" % k)
f_twords.writelines(["\t%s %f\n" % (self.local_bi.get_value(w), p) for w, p in words_list[:out_num]])
return
def load_twords(self, file_name):
"""
:key: 加载模型的twords数据,即先验数据
"""
self.prior_word.clear()
topic = -1
with open(file_name, "r", encoding="utf-8") as f_twords:
for line in f_twords:
if line.startswith("Topic"):
topic = int(line.strip()[6:-3])
else:
word_id = self.local_bi.get_key(line.strip().split()[0].strip())
self.prior_word[word_id].append(topic)
return
def save_tag(self, file_name):
"""
:key: 输出模型最终给数据打标签的结果,用到theta值
"""
self.calculate_theta()
with open(file_name, "w", encoding="utf-8") as f_tag:
for m in range(self.M):
f_tag.write("%s\t%s\n" % (self.artids_list[m], " ".join([str(item) for item in self.theta[m]])))
return
def save_model(self):
"""
:key: 保存模型数据
"""
name_predix = "%s-%05d" % (self.model_name, self.current_iter)
# 保存训练结果
self.save_parameter(os.path.join(self.dir_path, "%s.%s" % (name_predix, "param")))
self.save_wordmap(os.path.join(self.dir_path, "%s.%s" % (name_predix, "wordmap")))
self.save_zvalue(os.path.join(self.dir_path, "%s.%s" % (name_predix, "zvalue")))
#保存额外数据
self.save_twords(os.path.join(self.dir_path, "%s.%s" % (name_predix, "twords")))
self.save_tag(os.path.join(self.dir_path, "%s.%s" % (name_predix, "tag")))
return
def load_model(self):
"""
:key: 加载模型数据
"""
name_predix = "%s-%05d" % (self.model_name, self.current_iter)
# 加载训练结果
self.load_parameter(os.path.join(self.dir_path, "%s.%s" % (name_predix, "param")))
self.load_wordmap(os.path.join(self.dir_path, "%s.%s" % (name_predix, "wordmap")))
self.load_zvalue(os.path.join(self.dir_path, "%s.%s" % (name_predix, "zvalue")))
return
class LdaModel(LdaBase):
"""
LDA模型定义,主要实现训练、继续训练、推断的过程
"""
def init_train_model(self, dir_path, model_name, current_iter, iters_num=None, topics_num=10, twords_num=200,
alpha=-1.0, beta=0.01, data_file="", prior_file=""):
"""
:key: 初始化训练模型,根据参数current_iter(是否等于0)决定是初始化新模型,还是加载已有模型
:key: 当初始化新模型时,除了prior_file先验文件外,其余所有的参数都需要,且current_iter等于0
:key: 当加载已有模型时,只需要dir_path, model_name, current_iter(不等于0), iters_num, twords_num即可
:param iters_num: 可以为整数值或者“auto”
"""
if current_iter == 0:
logging.debug("init a new train model")
# 初始化语料集
self.init_corpus_with_file(data_file)
# 初始化部分变量
self.dir_path = dir_path
self.model_name = model_name
self.current_iter = current_iter
self.iters_num = iters_num
self.topics_num = topics_num
self.K = topics_num
self.twords_num = twords_num
# 初始化alpha和beta
self.alpha = numpy.array([alpha if alpha > 0 else (50.0/self.K) for k in range(self.K)])
self.beta = numpy.array([beta if beta > 0 else 0.01 for w in range(self.V)])
# 初始化Z值,以便统计计数
self.Z = [[numpy.random.randint(self.K) for n in range(len(self.arts_Z[m]))] for m in range(self.M)]
else:
logging.debug("init an existed model")
# 初始化部分变量
self.dir_path = dir_path
self.model_name = model_name
self.current_iter = current_iter
self.iters_num = iters_num
self.twords_num = twords_num
# 加载已有模型
self.load_model()
# 初始化统计计数
self.init_statistics()
# 计算alpha和beta的和值
self.sum_alpha_beta()
# 初始化先验知识
if prior_file:
self.load_twords(prior_file)
# 返回该模型
return self
def begin_gibbs_sampling_train(self, is_calculate_preplexity=True):
"""
:key: 训练模型,对语料集中的所有数据进行Gibbs抽样,并保存最后的抽样结果
"""
# Gibbs抽样
logging.debug("sample iteration start, iters_num: " + str(self.iters_num))
self.gibbs_sampling(is_calculate_preplexity)
logging.debug("sample iteration finish")
# 保存模型
logging.debug("save model")
self.save_model()
return
def init_inference_model(self, train_model):
"""
:key: 初始化推断模型
"""
self.train_model = train_model
# 初始化变量: 主要用到self.topics_num, self.K
self.topics_num = train_model.topics_num
self.K = train_model.K
# 初始化变量self.alpha, self.beta,直接沿用train_model的值
self.alpha = train_model.alpha # K维的float值,训练和推断模型中的K相同,故可以沿用
self.beta = train_model.beta # V维的float值,推断模型中用于计算phi的V值应该是全局的word的数量,故可以沿用
self.sum_alpha_beta() # 计算alpha和beta的和
# 初始化数据集的self.global_bi
self.global_bi = train_model.local_bi
return
def inference_data(self, article_list, iters_num=100, repeat_num=3):
"""
:key: 利用现有模型推断数据
:param article_list: 每一行的数据格式为: id[tab]word1 word2 word3......
:param iters_num: 每一次迭代的次数
:param repeat_num: 重复迭代的次数
"""
# 初始化语料集
self.init_corpus_with_articles(article_list)
# 初始化返回变量
return_theta = numpy.zeros((self.M, self.K))
# 重复抽样
for i in range(repeat_num):
logging.debug("inference repeat_num: " + str(i+1))
# 初始化变量
self.current_iter = 0
self.iters_num = iters_num
# 初始化Z值,以便统计计数
self.Z = [[numpy.random.randint(self.K) for n in range(len(self.arts_Z[m]))] for m in range(self.M)]
# 初始化统计计数
self.init_statistics()
# 开始推断
self.gibbs_sampling(is_calculate_preplexity=False)
# 计算theta
self.calculate_theta()
return_theta += self.theta
# 计算结果,并返回
return return_theta / repeat_num
if __name__ == "__main__":
"""
测试代码
"""
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s\t%(levelname)s\t%(message)s")
# train或者inference
test_type = "train"
# test_type = "inference"
# 测试新模型
if test_type == "train":
model = LdaModel()
# 由prior_file决定是否带有先验知识
model.init_train_model("data/", "model", current_iter=0, iters_num="auto", topics_num=10, data_file="corpus.txt")
# model.init_train_model("data/", "model", current_iter=0, iters_num="auto", topics_num=10, data_file="corpus.txt", prior_file="prior.twords")
model.begin_gibbs_sampling_train()
elif test_type == "inference":
model = LdaModel()
model.init_inference_model(LdaModel().init_train_model("data/", "model", current_iter=134))
data = [
"cn 咪咕 漫画 咪咕 漫画 漫画 更名 咪咕 漫画 资源 偷星 国漫 全彩 日漫 实时 在线看 随心所欲 登陆 漫画 资源 黑白 全彩 航海王",
"co aircloud aircloud 硬件 设备 wifi 智能 手要 平板电脑 电脑 存储 aircloud 文件 远程 型号 aircloud 硬件 设备 wifi"
]
result = model.inference_data(data)
# 退出程序
exit()