forked from fraser-lab/solution_scattering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
thermometry_timepoints.py
388 lines (319 loc) · 13 KB
/
thermometry_timepoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""
Using tempurature standards and SVD of the water ring,
calculate the average temperature of the on and off at each
timepoint in a t-jump series.
Requires Parse and Trace
"""
import csv
import math
from os import listdir
import subprocess
from sys import argv
#import matplotlib
#matplotlib.use("MacOSX")
from matplotlib import pyplot as plt
import numpy as np
from numpy.linalg import svd
from parse import parse, alg_scale
##############################################
# Statics Information
##############################################
#TEMPS = ["5C", "14C", "-5C", "0C", "10C", "13C", "3C", "8C", "18C"]
TIMES = ["-10.1us", "562ns", "750ns", "1us", "1.33us", "1.78us", "2.37us", "3.16us", "4.22us", "5.62us",
"7.5us", "10us", "13.3us", "17.8us", "23.7us", "31.6us", "42.2us", "56.2us", "75us", "100us", "133us",
"178us", "237us", "316us", "422us", "562us", "750us", "1ms"] #
# TIMES = ["-10.1us", "562ns", "1us", "1.78us", "3.16us", "5.62us", "10us", "17.8us", "31.6us", "56.2us", "100us", "178us", "316us", "562us", "1ms"]
STATIC_REPS = range(32)
STATIC_TEMPS = [3, 8, 13, 18, 23, 28]
STATIC_PREFIX = "CypA-WT-static-1_offPC0T"
# STATIC_TEMPS = [14,21,28]
##############################################
# Time Resolved Information
##############################################
REPS = range(5,40)
TR_DIRECTORIES = ["/mnt/d/T-jump_CypA_best/March2017/Analysis/WAXS/common/integration/CypA/CypA-WT-1/xray_images/",
"/mnt/d/T-jump_CypA_best/March2017/Analysis/WAXS/common/integration/CypA/CypA-WT-2/xray_images/",
"/mnt/d/T-jump_CypA_best/March2017/Analysis/WAXS/common/integration/CypA/CypA-WT-3/xray_images/",
"/mnt/d/T-jump_CypA_best/March2017/Analysis/WAXS/common/integration/CypA/CypA-WT-4/xray_images/",
"/mnt/d/T-jump_CypA_best/March2017/Analysis/WAXS/common/integration/CypA/CypA-NH-1/xray_images/"]
TR_PREFIXES = ["CypA-WT-1", "CypA-WT-2", "CypA-WT-3", "CypA-WT-4", "CypA-NH-1"]
assert len(TR_PREFIXES) == len(TR_DIRECTORIES)
length = 0
static_directory = "/mnt/d/T-jump_CypA_best/March2017/Analysis/WAXS/common/integration/CypA/CypA-WT-static-1/xray_images/"
# fig,ax = plt.subplots()
# files = []
vectors = []
subtracted_vectors = []
##############################################
# Reference dataset is used to scale all data
##############################################
reference = parse("/mnt/d/T-jump_CypA_best/March2017/Analysis/WAXS/common/integration/CypA/CypA-WT-static-1/xray_images/CypA-WT-static-1_offPC0T13_20.tpkl")
##############################################
# Load and scale all static temperature data
# Goes through each temp and loads them all in turn.
##############################################
for index, temp in enumerate(STATIC_TEMPS):
for i in STATIC_REPS:
static_string = "{0}/{1}{2}_{3}.tpkl".format(static_directory, STATIC_PREFIX, temp, i+1)
static = parse_tpkl(static_string)
static_scaled = alg_scale(reference, static)[0]
vectors.append((static_scaled, static_string))
##############################################
# Load and scale all t-jump data.
# Store the number you load in for each time-resolved dataset because it is variable (outliers removed)
# Iteration: Dataset (usually temp or mutant variant), then repeat iwthin that dataset, then
# Load and algebraically scale on and off separately for each time in each rep, and store both.
##############################################
lengths = []
for ind,tr_directory in enumerate(TR_DIRECTORIES):
PREFIX = TR_PREFIXES[ind]
length = 0
for i in REPS:
#for temp in TEMPS:
for index, time in enumerate(TIMES):
try:
on_string = "{0}/{1}_{2}_{3}.tpkl".format(tr_directory, PREFIX, i+1, time)
on = parse(on_string)
on_scaled = alg_scale(reference, on)[0]
if index > 0:
off_count = "-{}".format(index+1)
else:
off_count = ""
off_string = "{0}/{1}_{2}_-10us{3}.tpkl".format(tr_directory, PREFIX, i+1, off_count)
off = parse(off_string)
off_scaled = alg_scale(reference, off)[0]
vectors.append((off_scaled, off_string, on_string))
vectors.append((on_scaled, off_string, on_string))
length += 2
except:
"""On some of our old datasets, we had a different file naming convention, so we check here"""
try:
on_string = "{0}/{1}_{2}_{3}_on.tpkl".format(tr_directory, PREFIX, i+1, time)
on = parse(on_string)
on_scaled = alg_scale(reference, on)[0]
if index > 0:
off_count = "-{}".format(index+1)
else:
off_count = ""
off_string = "{0}/{1}_{2}_-10us{3}_on.tpkl".format(tr_directory, PREFIX, i+1, off_count)
off = parse(off_string)
off_scaled = alg_scale(reference, off)[0]
vectors.append((off_scaled, off_string, on_string))
vectors.append((on_scaled, off_string, on_string))
length += 2
except:
pass
print "one or both of the on/off pairs was tossed:"
print "{0}/{1}_{2}_{3}.tpkl".format(tr_directory, PREFIX, i+1, time)
lengths.append(length)
print lengths
##############################################
## The code below can break if data is included from multiple trips, since
## different experiment geometries can change the number of Q bins.
##############################################
q = on.q
length = len(q)
# matrix = np.matrix([k[0] for k in vectors]).transpose()
for k in vectors[0:3]:
print k
print k[0]
print k[0][1]
##############################################
# SVD with Q Scaling
##############################################
matrix = np.matrix([[q[j]*k[0][j] for j in range(20,length-700)] for k in vectors]).transpose()
u,s,v = svd(matrix, full_matrices=False)
sum_var = np.sum([i**2 for i in s])
print "Variance captured"
print [(i**2)/sum_var for i in s][0:10]
# print u.shape
# print s.shape
# print v[0]
# print v[1]
# for vector in v[0:7]:
# print vector[0]
# print v.slice(0)
##############################################
# Plot right singular vectors to show how they differ per snapshot, and save them out to a csv.
##############################################
fig, ax = plt.subplots()
ax.axvspan(0,29.5,color="0.9", alpha=0.5, linewidth=0)
with open("timepoints.csv", "wb") as csv_output:
data_struct = v.tolist()[:8]
wr = csv.writer(csv_output)
for index in range(len(data_struct[0])):
wr.writerow([i[index] for i in data_struct])
for vector in v.tolist()[1:4]:
# print vector
# ax.plot(range(len(vectors)), [value+i for value in vector], "-")
ax.plot([value for value in vector], "-") # , color="#60BD68"
ax.yaxis.set_ticks_position('left') # this one is optional but I still recommend it...
ax.xaxis.set_ticks_position('bottom')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
ax.set_xlabel("Image")
ax.set_ylabel("Amplitude (a.u.)")
fig.savefig("timepoints.png")
fig2, ax2 = plt.subplots()
##############################################
#Plot left singular vectors to show their shapes, and save them out to a csv.
##############################################
with open("singular_vectors.csv", "wb") as csv_output:
q_dat = q[20:-700]
data_struct =u.transpose().tolist()[:8]
wr = csv.writer(csv_output)
for index, q_val in enumerate(q_dat):
row = [q_val]
row.extend([i[index] for i in data_struct])
wr.writerow(row)
for vector in u.transpose().tolist()[1:4]:
# print vector
# ax.plot(range(len(vectors)), [value+i for value in vector], "-")
x = q[20:-700]
ax2.plot(x, [value for value in vector], "-") #color="#60BD68"
ax2.yaxis.set_ticks_position('left') # this one is optional but I still recommend it...
ax2.xaxis.set_ticks_position('bottom')
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
ax2.get_xaxis().tick_bottom()
ax2.get_yaxis().tick_left()
ax2.set_xlabel(r"q ($\AA^{-1}$)")
ax2.set_ylabel(r"q$\cdot$I")
ax2.set_xscale("log", nonposx='clip')
fig2.savefig("Singular_vectors_WT_HD_Unscaled.png")
#plt.show()
# zero_vector_values_on = v.tolist()[0][1::2]
# zero_vector_values_off = v.tolist()[0][0::2]
# average_on = np.average(zero_vector_values_on)
# std_on = np.std(zero_vector_values_on)
# average_off = np.average(zero_vector_values_off)
# std_off = np.std(zero_vector_values_off)
# print average_on, average_off, std_on, std_off
# for index, value in enumerate(v.tolist()[0]):
# if index % 2 == 0:
# if ((value - average_off) / std_off) > 2.5:
# print vectors[index][1]
# print vectors[index][2]
# elif index % 2 == 1:
# if ((value - average_on) / std_on) > 2.5:
# print vectors[index][1]
# print vectors[index][2]
##############################################
# Plot singular values to show variance accounted for by each vector.
##############################################
fig3, ax3= plt.subplots()
ax3.plot([np.log(i) for i in s][0:10], "-")
fig3.savefig("Singular_values_WT_HD_Unscaled.png")
##############################################
#Separate out the 2nd right singular vector data by temperature and plot as a function of temoperature.
##############################################
fig4,ax4 = plt.subplots()
x = STATIC_TEMPS
y = []
y_weight = []
for index, temp in enumerate(STATIC_TEMPS):
average_value = np.mean(v.tolist()[1][index*len(STATIC_REPS):index*len(STATIC_REPS)+len(STATIC_REPS)])
std_value = np.std(v.tolist()[1][index*len(STATIC_REPS):index*len(STATIC_REPS)+len(STATIC_REPS)])
y.append(average_value)
y_weight.append(1/std_value)
ax4.plot(x,y, ".")
##############################################
# Fit a quadratic curve to the v vs T data to generate a standard curve for temperature calculation.
##############################################
m,n,b = np.polyfit(x,y,2, w=y_weight)
print m, n, b
ax4.plot(x, [m*i**2+n*i+b for i in x], ls="--")
##############################################
# Also calculate a linaer fit, but that doesn't fit nearly as well.
##############################################
m1, b1 = np.polyfit(x,y,1)
print m1, b1
ax4.plot(x,[m1*i+b1 for i in x])
fig4.savefig("temperature_fits.png")
##############################################
# Save out standard curve information to a csv
##############################################
with open("temperature_fits.csv", "wb") as csv_output:
wr = csv.writer(csv_output)
wr.writerow(["Temp", "Measured", "Quadratic Estimate", "Linear Estimate"])
for index, x_val in enumerate(x):
row = [x_val, y[index], m*x_val**2 + n*x_val + b, m1*x_val + b1]
wr.writerow(row)
##############################################
# Convert time strings to values usable for plotting.
##############################################
times_numeric = []
for time in TIMES:
number = float(time[:-2])
scale = time[-2:]
if scale == "ns":
times_numeric.append(number)
elif scale == "us":
times_numeric.append(1000*number)
elif scale == "ms":
times_numeric.append(1000*1000*number)
else:
print "scale could not be calculated"
fig5,ax5 = plt.subplots()
##############################################
# Iterate through datasets and times and average the ons and offs separately,
# then calculate temperatures for each based on the SVD quadratic fit.
#
# Plot delta temperatures as a function of time delay for each experiment.
##############################################
starting_time = 0
for experiment, _ in enumerate(TR_DIRECTORIES):
print TR_DIRECTORIES[experiment]
start = len(STATIC_REPS)*len(STATIC_TEMPS)+sum([i for position, i in enumerate(lengths) if position < experiment])
total = len(TIMES)
differences = []
highs = []
lows = []
for index,_ in enumerate(TIMES[starting_time:]):
ons = []
offs = []
offset = index+starting_time
print "====="
print TIMES[offset]
for rep in range(len(REPS)):
ons.append(v.tolist()[1][start+rep*total*2+offset*2+1])
offs.append(v.tolist()[1][start+rep*total*2+offset*2])
on_mean = np.mean(ons)
high = min(np.roots([m,n,b-on_mean]))
print "Jumped Temperature: %.2f" % high
off_mean = np.mean(offs)
low = min(np.roots([m,n,b-off_mean]))
print "Starting Temperature: %.2f" % low
highs.append(high)
lows.append(low)
differences.append(high-low)
np.savetxt("{}_highs.txt".format(experiment), highs)
np.savetxt("{}_lows.txt".format(experiment), lows)
np.savetxt("{}_differences.txt".format(experiment), differences)
ax5.plot(times_numeric[1:], differences[1:], "-", label = TR_DIRECTORIES[experiment])
ax5.legend(loc='upper center')
ax5.set_title("")
ax5.set_xlabel("Time (ns)")
ax5.set_ylabel(r"Calculated Temperature Jump ($^\circ$)")
fig5.savefig("cooling.png")
plt.show()
# on_temp = (np.mean(ons)-b)/m
# print np.mean(ons), np.std(ons)
# off_temp = (np.mean(offs)-b)/m
# print np.mean(offs), np.std(offs)
# print on_temp, off_temp
# on_temp = m*np.mean(ons)**2 + n* np.mean(ons) + b
# off_temp = m*np.mean(offs)**2 + n* np.mean(offs) + b
# on_temp = m1*np.mean(ons)+b1
# off_temp = m1*np.mean(offs)+b1
# print on_temp, off_temp
# print on_temp-off_temp
# fig, ax = plt.subplots()
# for index, _ in enumerate(v.tolist()[0]):
# vector = [i *v.tolist()[0][index] for i in u.transpose().tolist()[0]] + [i *v.tolist()[1][index] for i in u.transpose().tolist()[1]]
# ax.plot(vector)
# # ax.set_title("index: {0}".format(index))
# fig.savefig("Combination1_2.png")
# plt.show()