Thank you for your interest in contributing to Rust! There are many ways to contribute, and we appreciate all of them. This document is a bit long, so here's links to the major sections:
- Feature Requests
- Bug Reports
- The Build System
- Pull Requests
- Writing Documentation
- Issue Triage
- Out-of-tree Contributions
- Helpful Links and Information
If you have questions, please make a post on internals.rust-lang.org or hop on the Rust Discord server or Rust Zulip server.
As a reminder, all contributors are expected to follow our Code of Conduct.
The rustc-dev-guide is your friend! It describes how the compiler works and how to contribute to it in more detail than this document.
If this is your first time contributing, the walkthrough chapter of the guide can give you a good example of how a typical contribution would go.
To request a change to the way the Rust language works, please head over to the RFCs repository and view the README for instructions.
While bugs are unfortunate, they're a reality in software. We can't fix what we don't know about, so please report liberally. If you're not sure if something is a bug or not, feel free to file a bug anyway.
If you believe reporting your bug publicly represents a security risk to Rust users, please follow our instructions for reporting security vulnerabilities.
If you're using the nightly channel, please check if the bug exists in the latest toolchain before filing your bug. It might be fixed already.
If you have the chance, before reporting a bug, please search existing issues, as it's possible that someone else has already reported your error. This doesn't always work, and sometimes it's hard to know what to search for, so consider this extra credit. We won't mind if you accidentally file a duplicate report.
Similarly, to help others who encountered the bug find your issue, consider filing an issue with a descriptive title, which contains information that might be unique to it. This can be the language or compiler feature used, the conditions that trigger the bug, or part of the error message if there is any. An example could be: "impossible case reached" on lifetime inference for impl Trait in return position.
Opening an issue is as easy as following this link and filling out the fields. Here's a template that you can use to file a bug, though it's not necessary to use it exactly:
<short summary of the bug>
I tried this code:
<code sample that causes the bug>
I expected to see this happen: <explanation>
Instead, this happened: <explanation>
## Meta
`rustc --version --verbose`:
Backtrace:
All three components are important: what you did, what you expected, what
happened instead. Please include the output of rustc --version --verbose
,
which includes important information about what platform you're on, what
version of Rust you're using, etc.
Sometimes, a backtrace is helpful, and so including that is nice. To get
a backtrace, set the RUST_BACKTRACE
environment variable to a value
other than 0
. The easiest way
to do this is to invoke rustc
like this:
$ RUST_BACKTRACE=1 rustc ...
For info on how to configure and build the compiler, please see this
chapter of the rustc-dev-guide. This chapter contains info for
contributions to the compiler and the standard library. It also lists some
really useful commands to the build system (./x.py
), which could save you a
lot of time.
Pull requests are the primary mechanism we use to change Rust. GitHub itself has some great documentation on using the Pull Request feature. We use the "fork and pull" model described here, where contributors push changes to their personal fork and create pull requests to bring those changes into the source repository.
Please make pull requests against the master
branch.
Rust follows a no merge policy, meaning, when you encounter merge conflicts you are expected to always rebase instead of merge. E.g. always use rebase when bringing the latest changes from the master branch to your feature branch. Also, please make sure that fixup commits are squashed into other related commits with meaningful commit messages.
GitHub allows closing issues using keywords. This feature should be used to keep the issue tracker tidy. However, it is generally preferred to put the "closes #123" text in the PR description rather than the issue commit; particularly during rebasing, citing the issue number in the commit can "spam" the issue in question.
Please make sure your pull request is in compliance with Rust's style guidelines by running
$ python x.py test tidy
Make this check before every pull request (and every new commit in a pull request); you can add git hooks before every push to make sure you never forget to make this check.
All pull requests are reviewed by another person. We have a bot, @rust-highfive, that will automatically assign a random person to review your request.
If you want to request that a specific person reviews your pull request,
you can add an r?
to the pull request description. For example, Steve usually reviews
documentation changes. So if you were to make a documentation change, add
r? @steveklabnik
to the end of the pull request description, and @rust-highfive will assign @steveklabnik instead of a random person. This is entirely optional.
After someone has reviewed your pull request, they will leave an annotation
on the pull request with an r+
. It will look something like this:
@bors r+
This tells @bors, our lovable integration bot, that your pull request has
been approved. The PR then enters the merge queue, where @bors
will run all the tests on every platform we support. If it all works out,
@bors will merge your code into master
and close the pull request.
Depending on the scale of the change, you may see a slightly different form of r+
:
@bors r+ rollup
The additional rollup
tells @bors that this change is eligible for to be
"rolled up". Changes that are rolled up are tested and merged at the same time, to
speed the process up. Typically only small changes that are expected not to conflict
with one another are rolled up.
Speaking of tests, Rust has a comprehensive test suite. More information about it can be found here.
As a developer to this repository, you don't have to treat the following external projects differently from other crates that are directly in this repo:
- Clippy
They are just regular files and directories. This is in contrast to submodule
dependencies
(see below for those). Only tool authors will actually use any operations here.
There are two synchronization directions: subtree push
and subtree pull
.
git subtree push -P src/tools/clippy [email protected]:your-github-name/rust-clippy sync-from-rust
takes all the changes that happened to the copy in this repo and creates commits on the remote repo that match the local changes. Every local commit that touched the subtree causes a commit on the remote repo, but is modified to move the files from the specified directory to the tool repo root.
Make sure to not pick the master
branch on the tool repo, so you can open a normal PR to the tool
to merge that subrepo push.
git subtree pull -P src/tools/clippy https://github.com/rust-lang/rust-clippy master
takes all changes since the last subtree pull
from the tool repo
repo and adds these commits to the rustc repo + a merge commit that moves the tool changes into
the specified directory in the rust repository.
It is recommended that you always do a push first and get that merged to the tool master branch.
Then, when you do a pull, the merge works without conflicts.
While it's definitely possible to resolve conflicts during a pull, you may have to redo the conflict
resolution if your PR doesn't get merged fast enough and there are new conflicts. Do not try to
rebase the result of a git subtree pull
, rebasing merge commits is a bad idea in general.
You always need to specify the -P
prefix to the subtree directory and the corresponding remote
repository. If you specify the wrong directory or repository
you'll get very fun merges that try to push the wrong directory to the wrong remote repository.
Luckily you can just abort this without any consequences by throwing away either the pulled commits
in rustc or the pushed branch on the remote and try again. It is usually fairly obvious
that this is happening because you suddenly get thousands of commits that want to be synchronized.
If you want to create a new subtree dependency from an existing repository, call (from this repository's root directory!)
git subtree add -P src/tools/clippy https://github.com/rust-lang/rust-clippy.git master
This will create a new commit, which you may not rebase under any circumstances! Delete the commit and redo the operation if you need to rebase.
Now you're done, the src/tools/clippy
directory behaves as if Clippy were part of the rustc
monorepo, so no one but you (or others that synchronize subtrees) actually needs to use git subtree
.
Currently building Rust will also build the following external projects:
We allow breakage of these tools in the nightly channel. Maintainers of these projects will be notified of the breakages and should fix them as soon as possible.
After the external is fixed, one could add the changes with
git add path/to/submodule
outside the submodule.
In order to prepare your tool-fixing PR, you can run the build locally by doing
./x.py build src/tools/TOOL
. If you will be editing the sources
there, you may wish to set submodules = false
in the config.toml
to prevent x.py
from resetting to the original branch.
Breakage is not allowed in the beta and stable channels, and must be addressed before the PR is merged.
Rust's build system builds a number of tools that make use of the internals of the compiler. This includes RLS and rustfmt. If these tools break because of your changes, you may run into a sort of "chicken and egg" problem. These tools rely on the latest compiler to be built so you can't update them to reflect your changes to the compiler until those changes are merged into the compiler. At the same time, you can't get your changes merged into the compiler because the rust-lang/rust build won't pass until those tools build and pass their tests.
That means that, in the default state, you can't update the compiler without first fixing rustfmt, rls and the other tools that the compiler builds.
Luckily, a feature was added to Rust's build to make all of this easy to handle. The idea is that we allow these tools to be "broken", so that the rust-lang/rust build passes without trying to build them, then land the change in the compiler, wait for a nightly, and go update the tools that you broke. Once you're done and the tools are working again, you go back in the compiler and update the tools so they can be distributed again.
This should avoid a bunch of synchronization dances and is also much easier on contributors as there's no need to block on rls/rustfmt/other tools changes going upstream.
Here are those same steps in detail:
- (optional) First, if it doesn't exist already, create a
config.toml
by copyingconfig.toml.example
in the root directory of the Rust repository. Setsubmodules = false
in the[build]
section. This will preventx.py
from resetting to the original branch after you make your changes. If you need to update any submodules to their latest versions, see the section of this file about that for more information. - (optional) Run
./x.py test src/tools/rustfmt
(substituting the submodule that broke forrustfmt
). Fix any errors in the submodule (and possibly others). - (optional) Make commits for your changes and send them to upstream repositories as a PR.
- (optional) Maintainers of these submodules will not merge the PR. The PR can't be merged because CI will be broken. You'll want to write a message on the PR referencing your change, and how the PR should be merged once your change makes it into a nightly.
- Wait for your PR to merge.
- Wait for a nightly
- (optional) Help land your PR on the upstream repository now that your changes are in nightly.
- (optional) Send a PR to rust-lang/rust updating the submodule.
These instructions are specific to updating rustfmt
, however they may apply
to the other submodules as well. Please help by improving these instructions
if you find any discrepancies or special cases that need to be addressed.
To update the rustfmt
submodule, start by running the appropriate
git submodule
command.
For example, to update to the latest commit on the remote master branch,
you may want to run:
git submodule update --remote src/tools/rustfmt
If you run ./x.py build
now, and you are lucky, it may just work. If you see
an error message about patches that did not resolve to any crates, you will need
to complete a few more steps which are outlined with their rationale below.
(This error may change in the future to include more information.)
error: failed to resolve patches for `https://github.com/rust-lang/rustfmt`
Caused by:
patch for `rustfmt-nightly` in `https://github.com/rust-lang/rustfmt` did not resolve to any crates
failed to run: ~/rust/build/x86_64-unknown-linux-gnu/stage0/bin/cargo build --manifest-path ~/rust/src/bootstrap/Cargo.toml
If you haven't used the [patch]
section of Cargo.toml
before, there is some relevant documentation about it
in the cargo docs. In
addition to that, you should read the
Overriding dependencies
section of the documentation as well.
Specifically, the following section in Overriding dependencies reveals what the problem is:
Next up we need to ensure that our lock file is updated to use this new version of uuid so our project uses the locally checked out copy instead of one from crates.io. The way [patch] works is that it'll load the dependency at ../path/to/uuid and then whenever crates.io is queried for versions of uuid it'll also return the local version.
This means that the version number of the local checkout is significant and will affect whether the patch is used. Our manifest declared uuid = "1.0" which means we'll only resolve to >= 1.0.0, < 2.0.0, and Cargo's greedy resolution algorithm also means that we'll resolve to the maximum version within that range. Typically this doesn't matter as the version of the git repository will already be greater or match the maximum version published on crates.io, but it's important to keep this in mind!
This says that when we updated the submodule, the version number in our
src/tools/rustfmt/Cargo.toml
changed. The new version is different from
the version in Cargo.lock
, so the build can no longer continue.
To resolve this, we need to update Cargo.lock
. Luckily, cargo provides a
command to do this easily.
$ cargo update -p rustfmt-nightly
This should change the version listed in Cargo.lock
to the new version you updated
the submodule to. Running ./x.py build
should work now.
Documentation improvements are very welcome. The source of doc.rust-lang.org
is located in src/doc
in the tree, and standard API documentation is generated
from the source code itself. Documentation pull requests function in the same way
as other pull requests.
To find documentation-related issues, sort by the T-doc label.
You can find documentation style guidelines in RFC 1574.
In many cases, you don't need a full ./x.py doc
, which will build the entire
stage 2 compiler and compile the various books published on
doc.rust-lang.org. When updating documentation for the standard library,
first try ./x.py doc --stage 0 src/libstd
. If that fails, or if you need to
see the output from the latest version of rustdoc
, use --stage 1
instead of
--stage 0
. Results should appear in build/$TARGET/crate-docs
.
You can also use rustdoc
directly to check small fixes. For example,
rustdoc src/doc/reference.md
will render reference to doc/reference.html
.
The CSS might be messed up, but you can verify that the HTML is right.
Additionally, contributions to the rustc-dev-guide are always welcome. Contributions can be made directly at the rust-lang/rustc-dev-guide repo. The issue tracker in that repo is also a great way to find things that need doing. There are issues for beginners and advanced compiler devs alike!
Sometimes, an issue will stay open, even though the bug has been fixed. And sometimes, the original bug may go stale because something has changed in the meantime.
It can be helpful to go through older bug reports and make sure that they are still valid. Load up an older issue, double check that it's still true, and leave a comment letting us know if it is or is not. The least recently updated sort is good for finding issues like this.
Contributors with sufficient permissions on the Rust repo can help by adding labels to triage issues:
-
Yellow, A-prefixed labels state which area of the project an issue relates to.
-
Magenta, B-prefixed labels identify bugs which are blockers.
-
Dark blue, beta- labels track changes which need to be backported into the beta branches.
-
Light purple, C-prefixed labels represent the category of an issue.
-
Green, E-prefixed labels explain the level of experience necessary to fix the issue.
-
The dark blue final-comment-period label marks bugs that are using the RFC signoff functionality of rfcbot and are currently in the final comment period.
-
Red, I-prefixed labels indicate the importance of the issue. The I-nominated label indicates that an issue has been nominated for prioritizing at the next triage meeting.
-
The purple metabug label marks lists of bugs collected by other categories.
-
Purple gray, O-prefixed labels are the operating system or platform that this issue is specific to.
-
Orange, P-prefixed labels indicate a bug's priority. These labels are only assigned during triage meetings, and replace the I-nominated label.
-
The gray proposed-final-comment-period label marks bugs that are using the RFC signoff functionality of rfcbot and are currently awaiting signoff of all team members in order to enter the final comment period.
-
Pink, regression-prefixed labels track regressions from stable to the release channels.
-
The light orange relnotes label marks issues that should be documented in the release notes of the next release.
-
Gray, S-prefixed labels are used for tracking the status of pull requests.
-
Blue, T-prefixed bugs denote which team the issue belongs to.
If you're looking for somewhere to start, check out the E-easy tag.
There are a number of other ways to contribute to Rust that don't deal with this repository.
Answer questions in the Get Help! channels from the Rust Discord server, on users.rust-lang.org, or on StackOverflow.
Participate in the RFC process.
Find a requested community library, build it, and publish it to Crates.io. Easier said than done, but very, very valuable!
For people new to Rust, and just starting to contribute, or even for more seasoned developers, some useful places to look for information are:
- The rustc dev guide contains information about how various parts of the compiler work and how to contribute to the compiler
- Rust Forge contains additional documentation, including write-ups of how to achieve common tasks
- The Rust Internals forum, a place to ask questions and discuss Rust's internals
- The generated documentation for rust's compiler
- The rust reference, even though it doesn't specifically talk about Rust's internals, it's a great resource nonetheless
- Although out of date, Tom Lee's great blog article is very helpful
- rustaceans.org is helpful, but mostly dedicated to IRC
- The Rust Compiler Testing Docs
- For @bors, this cheat sheet is helpful
(though you'll need to replace
@homu
with@bors
in any commands) - Google! (search only in Rust Documentation to find types, traits, etc. quickly)
- Don't be afraid to ask! The Rust community is friendly and helpful.