From 6d2cde873cb50714aea3d05631dfe70dc53508a8 Mon Sep 17 00:00:00 2001 From: Andreas Motl Date: Thu, 7 Sep 2023 14:25:07 +0200 Subject: [PATCH] Tests: Add original MLflow `tests.store.tracking.test_sqlalchemy_store` --- tests/test_tracking.py | 3776 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3776 insertions(+) create mode 100644 tests/test_tracking.py diff --git a/tests/test_tracking.py b/tests/test_tracking.py new file mode 100644 index 0000000..718dff6 --- /dev/null +++ b/tests/test_tracking.py @@ -0,0 +1,3776 @@ +import json +import math +import os +import pathlib +import re +import shutil +import tempfile +import time +import unittest +import uuid +from concurrent.futures import ThreadPoolExecutor +from pathlib import Path +from unittest import mock + +import pytest +import sqlalchemy + +import mlflow +import mlflow.db +import mlflow.store.db.base_sql_model +from mlflow import entities +from mlflow.entities import ( + Experiment, + ExperimentTag, + Metric, + Param, + RunStatus, + RunTag, + SourceType, + ViewType, + _DatasetSummary, +) +from mlflow.environment_variables import MLFLOW_TRACKING_URI +from mlflow.exceptions import MlflowException +from mlflow.protos.databricks_pb2 import ( + BAD_REQUEST, + INVALID_PARAMETER_VALUE, + RESOURCE_DOES_NOT_EXIST, + TEMPORARILY_UNAVAILABLE, + ErrorCode, +) +from mlflow.store.db.db_types import MSSQL, MYSQL, POSTGRES, SQLITE +from mlflow.store.db.utils import ( + _get_latest_schema_revision, + _get_schema_version, +) +from mlflow.store.tracking import SEARCH_MAX_RESULTS_DEFAULT +from mlflow.store.tracking.dbmodels import models +from mlflow.store.tracking.dbmodels.initial_models import Base as InitialBase +from mlflow.store.tracking.dbmodels.models import ( + SqlDataset, + SqlExperiment, + SqlExperimentTag, + SqlInput, + SqlInputTag, + SqlLatestMetric, + SqlMetric, + SqlParam, + SqlRun, + SqlTag, +) +from mlflow.store.tracking.sqlalchemy_store import SqlAlchemyStore, _get_orderby_clauses +from mlflow.utils import mlflow_tags +from mlflow.utils.file_utils import TempDir +from mlflow.utils.mlflow_tags import MLFLOW_DATASET_CONTEXT, MLFLOW_RUN_NAME +from mlflow.utils.name_utils import _GENERATOR_PREDICATES +from mlflow.utils.os import is_windows +from mlflow.utils.time_utils import get_current_time_millis +from mlflow.utils.uri import extract_db_type_from_uri + +from tests.integration.utils import invoke_cli_runner +from tests.store.tracking import AbstractStoreTest +from tests.store.tracking.test_file_store import assert_dataset_inputs_equal + +DB_URI = "sqlite:///" +ARTIFACT_URI = "artifact_folder" + +pytestmark = pytest.mark.notrackingurimock + + +def db_types_and_drivers(): + d = { + "sqlite": [ + "pysqlite", + "pysqlcipher", + ], + "postgresql": [ + "psycopg2", + "pg8000", + "psycopg2cffi", + "pypostgresql", + "pygresql", + "zxjdbc", + ], + "mysql": [ + "mysqldb", + "pymysql", + "mysqlconnector", + "cymysql", + "oursql", + "gaerdbms", + "pyodbc", + "zxjdbc", + ], + "mssql": [ + "pyodbc", + "mxodbc", + "pymssql", + "zxjdbc", + "adodbapi", + ], + } + for db_type, drivers in d.items(): + for driver in drivers: + yield db_type, driver + + +@pytest.mark.parametrize(("db_type", "driver"), db_types_and_drivers()) +def test_correct_db_type_from_uri(db_type, driver): + assert extract_db_type_from_uri(f"{db_type}+{driver}://...") == db_type + # try the driver-less version, which will revert SQLAlchemy to the default driver + assert extract_db_type_from_uri(f"{db_type}://...") == db_type + + +@pytest.mark.parametrize( + "db_uri", + [ + "oracle://...", + "oracle+cx_oracle://...", + "snowflake://...", + "://...", + "abcdefg", + ], +) +def test_fail_on_unsupported_db_type(db_uri): + with pytest.raises(MlflowException, match=r"Invalid database engine"): + extract_db_type_from_uri(db_uri) + + +def test_fail_on_multiple_drivers(): + with pytest.raises(MlflowException, match=r"Invalid database URI"): + extract_db_type_from_uri("mysql+pymsql+pyodbc://...") + + +class TestSqlAlchemyStore(unittest.TestCase, AbstractStoreTest): + def _get_store(self, db_uri=""): + return SqlAlchemyStore(db_uri, ARTIFACT_URI) + + def create_test_run(self): + return self._run_factory() + + def _setup_db_uri(self): + if uri := MLFLOW_TRACKING_URI.get(): + self.temp_dbfile = None + self.db_url = uri + else: + fd, self.temp_dbfile = tempfile.mkstemp() + # Close handle immediately so that we can remove the file later on in Windows + os.close(fd) + self.db_url = f"{DB_URI}{self.temp_dbfile}" + + def setUp(self): + self._setup_db_uri() + self.store = self._get_store(self.db_url) + + def get_store(self): + return self.store + + def _get_query_to_reset_experiment_id(self): + dialect = self.store._get_dialect() + if dialect == POSTGRES: + return "ALTER SEQUENCE experiments_experiment_id_seq RESTART WITH 1" + elif dialect == MYSQL: + return "ALTER TABLE experiments AUTO_INCREMENT = 1" + elif dialect == MSSQL: + return "DBCC CHECKIDENT (experiments, RESEED, 0)" + elif dialect == SQLITE: + # In SQLite, deleting all experiments resets experiment_id + return None + raise ValueError(f"Invalid dialect: {dialect}") + + def tearDown(self): + if self.temp_dbfile: + os.remove(self.temp_dbfile) + else: + with self.store.ManagedSessionMaker() as session: + # Delete all rows in all tables + for model in ( + SqlParam, + SqlMetric, + SqlLatestMetric, + SqlTag, + SqlInputTag, + SqlInput, + SqlDataset, + SqlRun, + SqlExperimentTag, + SqlExperiment, + ): + session.query(model).delete() + + # Reset experiment_id to start at 1 + reset_experiment_id = self._get_query_to_reset_experiment_id() + if reset_experiment_id: + session.execute(sqlalchemy.sql.text(reset_experiment_id)) + shutil.rmtree(ARTIFACT_URI) + + def _experiment_factory(self, names): + if isinstance(names, (list, tuple)): + ids = [] + for name in names: + # Sleep to ensure each experiment has a unique creation_time for + # deterministic experiment search results + time.sleep(0.001) + ids.append(self.store.create_experiment(name=name)) + return ids + + time.sleep(0.001) + return self.store.create_experiment(name=names) + + def test_default_experiment(self): + experiments = self.store.search_experiments() + assert len(experiments) == 1 + + first = experiments[0] + assert first.experiment_id == "0" + assert first.name == "Default" + + def test_default_experiment_lifecycle(self): + default_experiment = self.store.get_experiment(experiment_id=0) + assert default_experiment.name == Experiment.DEFAULT_EXPERIMENT_NAME + assert default_experiment.lifecycle_stage == entities.LifecycleStage.ACTIVE + + self._experiment_factory("aNothEr") + all_experiments = [e.name for e in self.store.search_experiments()] + assert set(all_experiments) == {"aNothEr", "Default"} + + self.store.delete_experiment(0) + + assert [e.name for e in self.store.search_experiments()] == ["aNothEr"] + another = self.store.get_experiment(1) + assert another.name == "aNothEr" + + default_experiment = self.store.get_experiment(experiment_id=0) + assert default_experiment.name == Experiment.DEFAULT_EXPERIMENT_NAME + assert default_experiment.lifecycle_stage == entities.LifecycleStage.DELETED + + # destroy SqlStore and make a new one + del self.store + self.store = self._get_store(self.db_url) + + # test that default experiment is not reactivated + default_experiment = self.store.get_experiment(experiment_id=0) + assert default_experiment.name == Experiment.DEFAULT_EXPERIMENT_NAME + assert default_experiment.lifecycle_stage == entities.LifecycleStage.DELETED + + assert [e.name for e in self.store.search_experiments()] == ["aNothEr"] + all_experiments = [e.name for e in self.store.search_experiments(ViewType.ALL)] + assert set(all_experiments) == {"aNothEr", "Default"} + + # ensure that experiment ID dor active experiment is unchanged + another = self.store.get_experiment(1) + assert another.name == "aNothEr" + + def test_raise_duplicate_experiments(self): + with pytest.raises(Exception, match=r"Experiment\(name=.+\) already exists"): + self._experiment_factory(["test", "test"]) + + def test_raise_experiment_dont_exist(self): + with pytest.raises(Exception, match=r"No Experiment with id=.+ exists"): + self.store.get_experiment(experiment_id=100) + + def test_delete_experiment(self): + experiments = self._experiment_factory(["morty", "rick", "rick and morty"]) + + all_experiments = self.store.search_experiments() + assert len(all_experiments) == len(experiments) + 1 # default + + exp_id = experiments[0] + exp = self.store.get_experiment(exp_id) + time.sleep(0.01) + self.store.delete_experiment(exp_id) + + updated_exp = self.store.get_experiment(exp_id) + assert updated_exp.lifecycle_stage == entities.LifecycleStage.DELETED + + assert len(self.store.search_experiments()) == len(all_experiments) - 1 + assert updated_exp.last_update_time > exp.last_update_time + + def test_delete_restore_experiment_with_runs(self): + experiment_id = self._experiment_factory("test exp") + run1 = self._run_factory(config=self._get_run_configs(experiment_id)).info.run_id + run2 = self._run_factory(config=self._get_run_configs(experiment_id)).info.run_id + self.store.delete_run(run1) + run_ids = [run1, run2] + + self.store.delete_experiment(experiment_id) + + updated_exp = self.store.get_experiment(experiment_id) + assert updated_exp.lifecycle_stage == entities.LifecycleStage.DELETED + + deleted_run_list = self.store.search_runs( + experiment_ids=[experiment_id], + filter_string="", + run_view_type=ViewType.DELETED_ONLY, + ) + + assert len(deleted_run_list) == 2 + for deleted_run in deleted_run_list: + assert deleted_run.info.lifecycle_stage == entities.LifecycleStage.DELETED + assert deleted_run.info.experiment_id in experiment_id + assert deleted_run.info.run_id in run_ids + with self.store.ManagedSessionMaker() as session: + assert ( + self.store._get_run(session, deleted_run.info.run_id).deleted_time is not None + ) + + self.store.restore_experiment(experiment_id) + + updated_exp = self.store.get_experiment(experiment_id) + assert updated_exp.lifecycle_stage == entities.LifecycleStage.ACTIVE + + restored_run_list = self.store.search_runs( + experiment_ids=[experiment_id], + filter_string="", + run_view_type=ViewType.ACTIVE_ONLY, + ) + + assert len(restored_run_list) == 2 + for restored_run in restored_run_list: + assert restored_run.info.lifecycle_stage == entities.LifecycleStage.ACTIVE + with self.store.ManagedSessionMaker() as session: + assert self.store._get_run(session, restored_run.info.run_id).deleted_time is None + assert restored_run.info.experiment_id in experiment_id + assert restored_run.info.run_id in run_ids + + def test_get_experiment(self): + name = "goku" + experiment_id = self._experiment_factory(name) + actual = self.store.get_experiment(experiment_id) + assert actual.name == name + assert actual.experiment_id == experiment_id + + actual_by_name = self.store.get_experiment_by_name(name) + assert actual_by_name.name == name + assert actual_by_name.experiment_id == experiment_id + assert self.store.get_experiment_by_name("idontexist") is None + + def test_search_experiments_view_type(self): + experiment_names = ["a", "b"] + experiment_ids = self._experiment_factory(experiment_names) + self.store.delete_experiment(experiment_ids[1]) + + experiments = self.store.search_experiments(view_type=ViewType.ACTIVE_ONLY) + assert [e.name for e in experiments] == ["a", "Default"] + experiments = self.store.search_experiments(view_type=ViewType.DELETED_ONLY) + assert [e.name for e in experiments] == ["b"] + experiments = self.store.search_experiments(view_type=ViewType.ALL) + assert [e.name for e in experiments] == ["b", "a", "Default"] + + def test_search_experiments_filter_by_attribute(self): + experiment_names = ["a", "ab", "Abc"] + self._experiment_factory(experiment_names) + + experiments = self.store.search_experiments(filter_string="name = 'a'") + assert [e.name for e in experiments] == ["a"] + experiments = self.store.search_experiments(filter_string="attribute.name = 'a'") + assert [e.name for e in experiments] == ["a"] + experiments = self.store.search_experiments(filter_string="attribute.`name` = 'a'") + assert [e.name for e in experiments] == ["a"] + experiments = self.store.search_experiments(filter_string="attribute.`name` != 'a'") + assert [e.name for e in experiments] == ["Abc", "ab", "Default"] + experiments = self.store.search_experiments(filter_string="name LIKE 'a%'") + assert [e.name for e in experiments] == ["ab", "a"] + experiments = self.store.search_experiments(filter_string="name ILIKE 'a%'") + assert [e.name for e in experiments] == ["Abc", "ab", "a"] + experiments = self.store.search_experiments( + filter_string="name ILIKE 'a%' AND name ILIKE '%b'" + ) + assert [e.name for e in experiments] == ["ab"] + + def test_search_experiments_filter_by_time_attribute(self): + # Sleep to ensure that the first experiment has a different creation_time than the default + # experiment and eliminate flakiness. + time.sleep(0.001) + time_before_create1 = get_current_time_millis() + exp_id1 = self.store.create_experiment("1") + exp1 = self.store.get_experiment(exp_id1) + time.sleep(0.001) + time_before_create2 = get_current_time_millis() + exp_id2 = self.store.create_experiment("2") + exp2 = self.store.get_experiment(exp_id2) + + experiments = self.store.search_experiments( + filter_string=f"creation_time = {exp1.creation_time}" + ) + assert [e.experiment_id for e in experiments] == [exp_id1] + + experiments = self.store.search_experiments( + filter_string=f"creation_time != {exp1.creation_time}" + ) + assert [e.experiment_id for e in experiments] == [exp_id2, self.store.DEFAULT_EXPERIMENT_ID] + + experiments = self.store.search_experiments( + filter_string=f"creation_time >= {time_before_create1}" + ) + assert [e.experiment_id for e in experiments] == [exp_id2, exp_id1] + + experiments = self.store.search_experiments( + filter_string=f"creation_time < {time_before_create2}" + ) + assert [e.experiment_id for e in experiments] == [exp_id1, self.store.DEFAULT_EXPERIMENT_ID] + + now = get_current_time_millis() + experiments = self.store.search_experiments(filter_string=f"creation_time >= {now}") + assert experiments == [] + + time.sleep(0.001) + time_before_rename = get_current_time_millis() + self.store.rename_experiment(exp_id1, "new_name") + experiments = self.store.search_experiments( + filter_string=f"last_update_time >= {time_before_rename}" + ) + assert [e.experiment_id for e in experiments] == [exp_id1] + + experiments = self.store.search_experiments( + filter_string=f"last_update_time <= {get_current_time_millis()}" + ) + assert {e.experiment_id for e in experiments} == { + exp_id1, + exp_id2, + self.store.DEFAULT_EXPERIMENT_ID, + } + + experiments = self.store.search_experiments( + filter_string=f"last_update_time = {exp2.last_update_time}" + ) + assert [e.experiment_id for e in experiments] == [exp_id2] + + def test_search_experiments_filter_by_tag(self): + experiments = [ + ("exp1", [ExperimentTag("key1", "value"), ExperimentTag("key2", "value")]), + ("exp2", [ExperimentTag("key1", "vaLue"), ExperimentTag("key2", "vaLue")]), + ("exp3", [ExperimentTag("k e y 1", "value")]), + ] + for name, tags in experiments: + self.store.create_experiment(name, tags=tags) + + experiments = self.store.search_experiments(filter_string="tag.key1 = 'value'") + assert [e.name for e in experiments] == ["exp1"] + experiments = self.store.search_experiments(filter_string="tag.`k e y 1` = 'value'") + assert [e.name for e in experiments] == ["exp3"] + experiments = self.store.search_experiments(filter_string="tag.\"k e y 1\" = 'value'") + assert [e.name for e in experiments] == ["exp3"] + experiments = self.store.search_experiments(filter_string="tag.key1 != 'value'") + assert [e.name for e in experiments] == ["exp2"] + experiments = self.store.search_experiments(filter_string="tag.key1 != 'VALUE'") + assert [e.name for e in experiments] == ["exp2", "exp1"] + experiments = self.store.search_experiments(filter_string="tag.key1 LIKE 'val%'") + assert [e.name for e in experiments] == ["exp1"] + experiments = self.store.search_experiments(filter_string="tag.key1 LIKE '%Lue'") + assert [e.name for e in experiments] == ["exp2"] + experiments = self.store.search_experiments(filter_string="tag.key1 ILIKE '%alu%'") + assert [e.name for e in experiments] == ["exp2", "exp1"] + experiments = self.store.search_experiments( + filter_string="tag.key1 LIKE 'va%' AND tag.key2 LIKE '%Lue'" + ) + assert [e.name for e in experiments] == ["exp2"] + experiments = self.store.search_experiments(filter_string="tag.KEY = 'value'") + assert len(experiments) == 0 + + def test_search_experiments_filter_by_attribute_and_tag(self): + self.store.create_experiment( + "exp1", tags=[ExperimentTag("a", "1"), ExperimentTag("b", "2")] + ) + self.store.create_experiment( + "exp2", tags=[ExperimentTag("a", "3"), ExperimentTag("b", "4")] + ) + experiments = self.store.search_experiments( + filter_string="name ILIKE 'exp%' AND tags.a = '1'" + ) + assert [e.name for e in experiments] == ["exp1"] + + def test_search_experiments_order_by(self): + experiment_names = ["x", "y", "z"] + self._experiment_factory(experiment_names) + + experiments = self.store.search_experiments(order_by=["name"]) + assert [e.name for e in experiments] == ["Default", "x", "y", "z"] + + experiments = self.store.search_experiments(order_by=["name ASC"]) + assert [e.name for e in experiments] == ["Default", "x", "y", "z"] + + experiments = self.store.search_experiments(order_by=["name DESC"]) + assert [e.name for e in experiments] == ["z", "y", "x", "Default"] + + experiments = self.store.search_experiments(order_by=["experiment_id DESC"]) + assert [e.name for e in experiments] == ["z", "y", "x", "Default"] + + experiments = self.store.search_experiments(order_by=["name", "experiment_id"]) + assert [e.name for e in experiments] == ["Default", "x", "y", "z"] + + def test_search_experiments_order_by_time_attribute(self): + # Sleep to ensure that the first experiment has a different creation_time than the default + # experiment and eliminate flakiness. + time.sleep(0.001) + exp_id1 = self.store.create_experiment("1") + time.sleep(0.001) + exp_id2 = self.store.create_experiment("2") + + experiments = self.store.search_experiments(order_by=["creation_time"]) + assert [e.experiment_id for e in experiments] == [ + self.store.DEFAULT_EXPERIMENT_ID, + exp_id1, + exp_id2, + ] + + experiments = self.store.search_experiments(order_by=["creation_time DESC"]) + assert [e.experiment_id for e in experiments] == [ + exp_id2, + exp_id1, + self.store.DEFAULT_EXPERIMENT_ID, + ] + + experiments = self.store.search_experiments(order_by=["last_update_time"]) + assert [e.experiment_id for e in experiments] == [ + self.store.DEFAULT_EXPERIMENT_ID, + exp_id1, + exp_id2, + ] + + self.store.rename_experiment(exp_id1, "new_name") + experiments = self.store.search_experiments(order_by=["last_update_time"]) + assert [e.experiment_id for e in experiments] == [ + self.store.DEFAULT_EXPERIMENT_ID, + exp_id2, + exp_id1, + ] + + def test_search_experiments_max_results(self): + experiment_names = list(map(str, range(9))) + self._experiment_factory(experiment_names) + reversed_experiment_names = experiment_names[::-1] + + experiments = self.store.search_experiments() + assert [e.name for e in experiments] == reversed_experiment_names + ["Default"] + experiments = self.store.search_experiments(max_results=3) + assert [e.name for e in experiments] == reversed_experiment_names[:3] + + def test_search_experiments_max_results_validation(self): + with pytest.raises(MlflowException, match=r"It must be a positive integer, but got None"): + self.store.search_experiments(max_results=None) + with pytest.raises(MlflowException, match=r"It must be a positive integer, but got 0"): + self.store.search_experiments(max_results=0) + with pytest.raises(MlflowException, match=r"It must be at most \d+, but got 1000000"): + self.store.search_experiments(max_results=1_000_000) + + def test_search_experiments_pagination(self): + experiment_names = list(map(str, range(9))) + self._experiment_factory(experiment_names) + reversed_experiment_names = experiment_names[::-1] + + experiments = self.store.search_experiments(max_results=4) + assert [e.name for e in experiments] == reversed_experiment_names[:4] + assert experiments.token is not None + + experiments = self.store.search_experiments(max_results=4, page_token=experiments.token) + assert [e.name for e in experiments] == reversed_experiment_names[4:8] + assert experiments.token is not None + + experiments = self.store.search_experiments(max_results=4, page_token=experiments.token) + assert [e.name for e in experiments] == reversed_experiment_names[8:] + ["Default"] + assert experiments.token is None + + def test_create_experiments(self): + with self.store.ManagedSessionMaker() as session: + result = session.query(models.SqlExperiment).all() + assert len(result) == 1 + time_before_create = get_current_time_millis() + experiment_id = self.store.create_experiment(name="test exp") + assert experiment_id == "1" + with self.store.ManagedSessionMaker() as session: + result = session.query(models.SqlExperiment).all() + assert len(result) == 2 + + test_exp = session.query(models.SqlExperiment).filter_by(name="test exp").first() + assert str(test_exp.experiment_id) == experiment_id + assert test_exp.name == "test exp" + + actual = self.store.get_experiment(experiment_id) + assert actual.experiment_id == experiment_id + assert actual.name == "test exp" + assert actual.creation_time >= time_before_create + assert actual.last_update_time == actual.creation_time + + def test_create_experiment_with_tags_works_correctly(self): + experiment_id = self.store.create_experiment( + name="test exp", + artifact_location="some location", + tags=[ExperimentTag("key1", "val1"), ExperimentTag("key2", "val2")], + ) + experiment = self.store.get_experiment(experiment_id) + assert len(experiment.tags) == 2 + assert experiment.tags["key1"] == "val1" + assert experiment.tags["key2"] == "val2" + + def test_run_tag_model(self): + # Create a run whose UUID we can reference when creating tag models. + # `run_id` is a foreign key in the tags table; therefore, in order + # to insert a tag with a given run UUID, the UUID must be present in + # the runs table + run = self._run_factory() + with self.store.ManagedSessionMaker() as session: + new_tag = models.SqlTag(run_uuid=run.info.run_id, key="test", value="val") + session.add(new_tag) + session.commit() + added_tags = [ + tag for tag in session.query(models.SqlTag).all() if tag.key == new_tag.key + ] + assert len(added_tags) == 1 + added_tag = added_tags[0].to_mlflow_entity() + assert added_tag.value == new_tag.value + + def test_metric_model(self): + # Create a run whose UUID we can reference when creating metric models. + # `run_id` is a foreign key in the tags table; therefore, in order + # to insert a metric with a given run UUID, the UUID must be present in + # the runs table + run = self._run_factory() + with self.store.ManagedSessionMaker() as session: + new_metric = models.SqlMetric(run_uuid=run.info.run_id, key="accuracy", value=0.89) + session.add(new_metric) + session.commit() + metrics = session.query(models.SqlMetric).all() + assert len(metrics) == 1 + + added_metric = metrics[0].to_mlflow_entity() + assert added_metric.value == new_metric.value + assert added_metric.key == new_metric.key + + def test_param_model(self): + # Create a run whose UUID we can reference when creating parameter models. + # `run_id` is a foreign key in the tags table; therefore, in order + # to insert a parameter with a given run UUID, the UUID must be present in + # the runs table + run = self._run_factory() + with self.store.ManagedSessionMaker() as session: + new_param = models.SqlParam( + run_uuid=run.info.run_id, key="accuracy", value="test param" + ) + session.add(new_param) + session.commit() + params = session.query(models.SqlParam).all() + assert len(params) == 1 + + added_param = params[0].to_mlflow_entity() + assert added_param.value == new_param.value + assert added_param.key == new_param.key + + def test_run_needs_uuid(self): + regex = { + SQLITE: r"NOT NULL constraint failed", + POSTGRES: r"null value in column .+ of relation .+ violates not-null constrain", + MYSQL: r"(Field .+ doesn't have a default value|Instance .+ has a NULL identity key)", + MSSQL: r"Cannot insert the value NULL into column .+, table .+", + }[self.store._get_dialect()] + # Depending on the implementation, a NULL identity key may result in different + # exceptions, including IntegrityError (sqlite) and FlushError (MysQL). + # Therefore, we check for the more generic 'SQLAlchemyError' + with pytest.raises(MlflowException, match=regex) as exception_context: + with self.store.ManagedSessionMaker() as session: + session.add(models.SqlRun()) + assert exception_context.value.error_code == ErrorCode.Name(BAD_REQUEST) + + def test_run_data_model(self): + with self.store.ManagedSessionMaker() as session: + run_id = uuid.uuid4().hex + run_data = models.SqlRun(run_uuid=run_id) + m1 = models.SqlMetric(run_uuid=run_id, key="accuracy", value=0.89) + m2 = models.SqlMetric(run_uuid=run_id, key="recal", value=0.89) + p1 = models.SqlParam(run_uuid=run_id, key="loss", value="test param") + p2 = models.SqlParam(run_uuid=run_id, key="blue", value="test param") + + session.add_all([m1, m2, p1, p2]) + session.add(run_data) + session.commit() + + run_datums = session.query(models.SqlRun).all() + actual = run_datums[0] + assert len(run_datums) == 1 + assert len(actual.params) == 2 + assert len(actual.metrics) == 2 + + def test_run_info(self): + experiment_id = self._experiment_factory("test exp") + config = { + "experiment_id": experiment_id, + "name": "test run", + "user_id": "Anderson", + "run_uuid": "test", + "status": RunStatus.to_string(RunStatus.SCHEDULED), + "source_type": SourceType.to_string(SourceType.LOCAL), + "source_name": "Python application", + "entry_point_name": "main.py", + "start_time": get_current_time_millis(), + "end_time": get_current_time_millis(), + "source_version": mlflow.__version__, + "lifecycle_stage": entities.LifecycleStage.ACTIVE, + "artifact_uri": "//", + } + run = models.SqlRun(**config).to_mlflow_entity() + + for k, v in config.items(): + # These keys were removed from RunInfo. + if k in ["source_name", "source_type", "source_version", "name", "entry_point_name"]: + continue + + v2 = getattr(run.info, k) + if k == "source_type": + assert v == SourceType.to_string(v2) + else: + assert v == v2 + + def _get_run_configs(self, experiment_id=None, tags=None, start_time=None): + return { + "experiment_id": experiment_id, + "user_id": "Anderson", + "start_time": start_time if start_time is not None else get_current_time_millis(), + "tags": tags, + "run_name": "name", + } + + def _run_factory(self, config=None): + if not config: + config = self._get_run_configs() + + experiment_id = config.get("experiment_id", None) + if not experiment_id: + experiment_id = self._experiment_factory("test exp") + config["experiment_id"] = experiment_id + + return self.store.create_run(**config) + + def test_create_run_with_tags(self): + experiment_id = self._experiment_factory("test_create_run") + tags = [RunTag("3", "4"), RunTag("1", "2")] + expected = self._get_run_configs(experiment_id=experiment_id, tags=tags) + + actual = self.store.create_run(**expected) + + assert actual.info.experiment_id == experiment_id + assert actual.info.user_id == expected["user_id"] + assert actual.info.run_name == expected["run_name"] + assert actual.info.start_time == expected["start_time"] + + assert len(actual.data.tags) == len(tags) + expected_tags = {tag.key: tag.value for tag in tags} + assert actual.data.tags == expected_tags + + def test_create_run_sets_name(self): + experiment_id = self._experiment_factory("test_create_run_run_name") + configs = self._get_run_configs(experiment_id=experiment_id) + run_id = self.store.create_run(**configs).info.run_id + run = self.store.get_run(run_id) + assert run.info.run_name == configs["run_name"] + assert run.data.tags.get(mlflow_tags.MLFLOW_RUN_NAME) == configs["run_name"] + run_id = self.store.create_run( + experiment_id=experiment_id, + user_id="user", + start_time=0, + run_name=None, + tags=[RunTag(mlflow_tags.MLFLOW_RUN_NAME, "test")], + ).info.run_id + run = self.store.get_run(run_id) + assert run.info.run_name == "test" + + with pytest.raises( + MlflowException, + match=re.escape( + "Both 'run_name' argument and 'mlflow.runName' tag are specified, but with " + "different values (run_name='test', mlflow.runName='test_2').", + ), + ): + self.store.create_run( + experiment_id=experiment_id, + user_id="user", + start_time=0, + run_name="test", + tags=[RunTag(mlflow_tags.MLFLOW_RUN_NAME, "test_2")], + ) + + def test_get_run_with_name(self): + experiment_id = self._experiment_factory("test_get_run") + configs = self._get_run_configs(experiment_id=experiment_id) + + run_id = self.store.create_run(**configs).info.run_id + + run = self.store.get_run(run_id) + + assert run.info.experiment_id == experiment_id + assert run.info.run_name == configs["run_name"] + + no_run_configs = { + "experiment_id": experiment_id, + "user_id": "Anderson", + "start_time": get_current_time_millis(), + "tags": [], + "run_name": None, + } + run_id = self.store.create_run(**no_run_configs).info.run_id + run = self.store.get_run(run_id) + assert run.info.run_name.split("-")[0] in _GENERATOR_PREDICATES + + name_empty_str_run = self.store.create_run(**{**configs, **{"run_name": ""}}) + run_name = name_empty_str_run.info.run_name + assert run_name.split("-")[0] in _GENERATOR_PREDICATES + + def test_to_mlflow_entity_and_proto(self): + # Create a run and log metrics, params, tags to the run + created_run = self._run_factory() + run_id = created_run.info.run_id + self.store.log_metric( + run_id=run_id, metric=entities.Metric(key="my-metric", value=3.4, timestamp=0, step=0) + ) + self.store.log_param(run_id=run_id, param=Param(key="my-param", value="param-val")) + self.store.set_tag(run_id=run_id, tag=RunTag(key="my-tag", value="tag-val")) + + # Verify that we can fetch the run & convert it to proto - Python protobuf bindings + # will perform type-checking to ensure all values have the right types + run = self.store.get_run(run_id) + run.to_proto() + + # Verify attributes of the Python run entity + assert isinstance(run.info, entities.RunInfo) + assert isinstance(run.data, entities.RunData) + + assert run.data.metrics == {"my-metric": 3.4} + assert run.data.params == {"my-param": "param-val"} + assert run.data.tags["my-tag"] == "tag-val" + + # Get the parent experiment of the run, verify it can be converted to protobuf + exp = self.store.get_experiment(run.info.experiment_id) + exp.to_proto() + + def test_delete_run(self): + run = self._run_factory() + + self.store.delete_run(run.info.run_id) + + with self.store.ManagedSessionMaker() as session: + actual = session.query(models.SqlRun).filter_by(run_uuid=run.info.run_id).first() + assert actual.lifecycle_stage == entities.LifecycleStage.DELETED + assert ( + actual.deleted_time is not None + ) # deleted time should be updated and thus not None anymore + + deleted_run = self.store.get_run(run.info.run_id) + assert actual.run_uuid == deleted_run.info.run_id + + def test_hard_delete_run(self): + run = self._run_factory() + metric = entities.Metric("blahmetric", 100.0, get_current_time_millis(), 0) + self.store.log_metric(run.info.run_id, metric) + param = entities.Param("blahparam", "100.0") + self.store.log_param(run.info.run_id, param) + tag = entities.RunTag("test tag", "a boogie") + self.store.set_tag(run.info.run_id, tag) + + self.store._hard_delete_run(run.info.run_id) + + with self.store.ManagedSessionMaker() as session: + actual_run = session.query(models.SqlRun).filter_by(run_uuid=run.info.run_id).first() + assert actual_run is None + actual_metric = ( + session.query(models.SqlMetric).filter_by(run_uuid=run.info.run_id).first() + ) + assert actual_metric is None + actual_param = ( + session.query(models.SqlParam).filter_by(run_uuid=run.info.run_id).first() + ) + assert actual_param is None + actual_tag = session.query(models.SqlTag).filter_by(run_uuid=run.info.run_id).first() + assert actual_tag is None + + def test_get_deleted_runs(self): + run = self._run_factory() + deleted_run_ids = self.store._get_deleted_runs() + assert deleted_run_ids == [] + + self.store.delete_run(run.info.run_uuid) + deleted_run_ids = self.store._get_deleted_runs() + assert deleted_run_ids == [run.info.run_uuid] + + def test_log_metric(self): + run = self._run_factory() + + tkey = "blahmetric" + tval = 100.0 + metric = entities.Metric(tkey, tval, get_current_time_millis(), 0) + metric2 = entities.Metric(tkey, tval, get_current_time_millis() + 2, 0) + nan_metric = entities.Metric("NaN", float("nan"), 0, 0) + pos_inf_metric = entities.Metric("PosInf", float("inf"), 0, 0) + neg_inf_metric = entities.Metric("NegInf", -float("inf"), 0, 0) + self.store.log_metric(run.info.run_id, metric) + self.store.log_metric(run.info.run_id, metric2) + self.store.log_metric(run.info.run_id, nan_metric) + self.store.log_metric(run.info.run_id, pos_inf_metric) + self.store.log_metric(run.info.run_id, neg_inf_metric) + + run = self.store.get_run(run.info.run_id) + assert tkey in run.data.metrics + assert run.data.metrics[tkey] == tval + + # SQL store _get_run method returns full history of recorded metrics. + # Should return duplicates as well + # MLflow RunData contains only the last reported values for metrics. + with self.store.ManagedSessionMaker() as session: + sql_run_metrics = self.store._get_run(session, run.info.run_id).metrics + assert len(sql_run_metrics) == 5 + assert len(run.data.metrics) == 4 + assert math.isnan(run.data.metrics["NaN"]) + assert run.data.metrics["PosInf"] == 1.7976931348623157e308 + assert run.data.metrics["NegInf"] == -1.7976931348623157e308 + + def test_log_metric_concurrent_logging_succeeds(self): + """ + Verifies that concurrent logging succeeds without deadlock, which has been an issue + in previous MLflow releases + """ + experiment_id = self._experiment_factory("concurrency_exp") + run_config = self._get_run_configs(experiment_id=experiment_id) + run1 = self._run_factory(run_config) + run2 = self._run_factory(run_config) + + def log_metrics(run): + for metric_val in range(100): + self.store.log_metric( + run.info.run_id, Metric("metric_key", metric_val, get_current_time_millis(), 0) + ) + for batch_idx in range(5): + self.store.log_batch( + run.info.run_id, + metrics=[ + Metric( + f"metric_batch_{batch_idx}", + (batch_idx * 100) + val_offset, + get_current_time_millis(), + 0, + ) + for val_offset in range(100) + ], + params=[], + tags=[], + ) + for metric_val in range(100): + self.store.log_metric( + run.info.run_id, Metric("metric_key", metric_val, get_current_time_millis(), 0) + ) + return "success" + + log_metrics_futures = [] + with ThreadPoolExecutor(max_workers=4) as executor: + # Log metrics to two runs across four threads + log_metrics_futures = [ + executor.submit(log_metrics, run) for run in [run1, run2, run1, run2] + ] + + for future in log_metrics_futures: + assert future.result() == "success" + + for run in [run1, run2, run1, run2]: + # We visit each run twice, logging 100 metric entries for 6 metric names; the same entry + # may be written multiple times concurrently; we assert that at least 100 metric entries + # are present because at least 100 unique entries must have been written + assert len(self.store.get_metric_history(run.info.run_id, "metric_key")) >= 100 + for batch_idx in range(5): + assert ( + len(self.store.get_metric_history(run.info.run_id, f"metric_batch_{batch_idx}")) + >= 100 + ) + + def test_log_metric_allows_multiple_values_at_same_ts_and_run_data_uses_max_ts_value(self): + run = self._run_factory() + run_id = run.info.run_id + metric_name = "test-metric-1" + # Check that we get the max of (step, timestamp, value) in that order + tuples_to_log = [ + (0, 100, 1000), + (3, 40, 100), # larger step wins even though it has smaller value + (3, 50, 10), # larger timestamp wins even though it has smaller value + (3, 50, 20), # tiebreak by max value + (3, 50, 20), # duplicate metrics with same (step, timestamp, value) are ok + # verify that we can log steps out of order / negative steps + (-3, 900, 900), + (-1, 800, 800), + ] + for step, timestamp, value in reversed(tuples_to_log): + self.store.log_metric(run_id, Metric(metric_name, value, timestamp, step)) + + metric_history = self.store.get_metric_history(run_id, metric_name) + logged_tuples = [(m.step, m.timestamp, m.value) for m in metric_history] + assert set(logged_tuples) == set(tuples_to_log) + + run_data = self.store.get_run(run_id).data + run_metrics = run_data.metrics + assert len(run_metrics) == 1 + assert run_metrics[metric_name] == 20 + metric_obj = run_data._metric_objs[0] + assert metric_obj.key == metric_name + assert metric_obj.step == 3 + assert metric_obj.timestamp == 50 + assert metric_obj.value == 20 + + def test_get_metric_history_paginated_request_raises(self): + with pytest.raises( + MlflowException, + match="The SQLAlchemyStore backend does not support pagination for the " + "`get_metric_history` API.", + ): + self.store.get_metric_history( + "fake_run", "fake_metric", max_results=50, page_token="42" + ) + + def test_log_null_metric(self): + run = self._run_factory() + + tkey = "blahmetric" + tval = None + metric = entities.Metric(tkey, tval, get_current_time_millis(), 0) + + with pytest.raises( + MlflowException, match=r"Got invalid value None for metric" + ) as exception_context: + self.store.log_metric(run.info.run_id, metric) + assert exception_context.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) + + def test_log_param(self): + run = self._run_factory() + + tkey = "blahmetric" + tval = "100.0" + param = entities.Param(tkey, tval) + param2 = entities.Param("new param", "new key") + self.store.log_param(run.info.run_id, param) + self.store.log_param(run.info.run_id, param2) + self.store.log_param(run.info.run_id, param2) + + run = self.store.get_run(run.info.run_id) + assert len(run.data.params) == 2 + assert tkey in run.data.params + assert run.data.params[tkey] == tval + + def test_log_param_uniqueness(self): + run = self._run_factory() + + tkey = "blahmetric" + tval = "100.0" + param = entities.Param(tkey, tval) + param2 = entities.Param(tkey, "newval") + self.store.log_param(run.info.run_id, param) + + with pytest.raises(MlflowException, match=r"Changing param values is not allowed"): + self.store.log_param(run.info.run_id, param2) + + def test_log_empty_str(self): + run = self._run_factory() + + tkey = "blahmetric" + tval = "" + param = entities.Param(tkey, tval) + param2 = entities.Param("new param", "new key") + self.store.log_param(run.info.run_id, param) + self.store.log_param(run.info.run_id, param2) + + run = self.store.get_run(run.info.run_id) + assert len(run.data.params) == 2 + assert tkey in run.data.params + assert run.data.params[tkey] == tval + + def test_log_null_param(self): + run = self._run_factory() + + tkey = "blahmetric" + tval = None + param = entities.Param(tkey, tval) + + dialect = self.store._get_dialect() + regex = { + SQLITE: r"NOT NULL constraint failed", + POSTGRES: r"null value in column .+ of relation .+ violates not-null constrain", + MYSQL: r"Column .+ cannot be null", + MSSQL: r"Cannot insert the value NULL into column .+, table .+", + }[dialect] + with pytest.raises(MlflowException, match=regex) as exception_context: + self.store.log_param(run.info.run_id, param) + if dialect != MYSQL: + assert exception_context.value.error_code == ErrorCode.Name(BAD_REQUEST) + else: + # Some MySQL client packages (and there are several available, e.g. + # PyMySQL, mysqlclient, mysql-connector-python... reports some + # errors, including NULL constraint violations, as a SQLAlchemy + # OperationalError, even though they should be reported as a more + # generic SQLAlchemyError. If that is fixed, we can remove this + # special case. + assert exception_context.value.error_code == ErrorCode.Name( + BAD_REQUEST + ) or exception_context.value.error_code == ErrorCode.Name(TEMPORARILY_UNAVAILABLE) + + def test_log_param_max_length_value(self): + run = self._run_factory() + tkey = "blahmetric" + tval = "x" * 500 + param = entities.Param(tkey, tval) + self.store.log_param(run.info.run_id, param) + run = self.store.get_run(run.info.run_id) + assert run.data.params[tkey] == str(tval) + with pytest.raises(MlflowException, match="exceeded length"): + self.store.log_param(run.info.run_id, entities.Param(tkey, "x" * 1000)) + + def test_set_experiment_tag(self): + exp_id = self._experiment_factory("setExperimentTagExp") + tag = entities.ExperimentTag("tag0", "value0") + new_tag = entities.RunTag("tag0", "value00000") + self.store.set_experiment_tag(exp_id, tag) + experiment = self.store.get_experiment(exp_id) + assert experiment.tags["tag0"] == "value0" + # test that updating a tag works + self.store.set_experiment_tag(exp_id, new_tag) + experiment = self.store.get_experiment(exp_id) + assert experiment.tags["tag0"] == "value00000" + # test that setting a tag on 1 experiment does not impact another experiment. + exp_id_2 = self._experiment_factory("setExperimentTagExp2") + experiment2 = self.store.get_experiment(exp_id_2) + assert len(experiment2.tags) == 0 + # setting a tag on different experiments maintains different values across experiments + different_tag = entities.RunTag("tag0", "differentValue") + self.store.set_experiment_tag(exp_id_2, different_tag) + experiment = self.store.get_experiment(exp_id) + assert experiment.tags["tag0"] == "value00000" + experiment2 = self.store.get_experiment(exp_id_2) + assert experiment2.tags["tag0"] == "differentValue" + # test can set multi-line tags + multi_line_Tag = entities.ExperimentTag("multiline tag", "value2\nvalue2\nvalue2") + self.store.set_experiment_tag(exp_id, multi_line_Tag) + experiment = self.store.get_experiment(exp_id) + assert experiment.tags["multiline tag"] == "value2\nvalue2\nvalue2" + # test cannot set tags that are too long + long_tag = entities.ExperimentTag("longTagKey", "a" * 5001) + with pytest.raises(MlflowException, match="exceeded length limit of 5000"): + self.store.set_experiment_tag(exp_id, long_tag) + # test can set tags that are somewhat long + long_tag = entities.ExperimentTag("longTagKey", "a" * 4999) + self.store.set_experiment_tag(exp_id, long_tag) + # test cannot set tags on deleted experiments + self.store.delete_experiment(exp_id) + with pytest.raises(MlflowException, match="must be in the 'active' state"): + self.store.set_experiment_tag(exp_id, entities.ExperimentTag("should", "notset")) + + def test_set_tag(self): + run = self._run_factory() + + tkey = "test tag" + tval = "a boogie" + new_val = "new val" + tag = entities.RunTag(tkey, tval) + new_tag = entities.RunTag(tkey, new_val) + self.store.set_tag(run.info.run_id, tag) + # Overwriting tags is allowed + self.store.set_tag(run.info.run_id, new_tag) + # test setting tags that are too long fails. + with pytest.raises(MlflowException, match="exceeded length limit of 5000"): + self.store.set_tag(run.info.run_id, entities.RunTag("longTagKey", "a" * 5001)) + # test can set tags that are somewhat long + self.store.set_tag(run.info.run_id, entities.RunTag("longTagKey", "a" * 4999)) + run = self.store.get_run(run.info.run_id) + assert tkey in run.data.tags + assert run.data.tags[tkey] == new_val + + def test_delete_tag(self): + run = self._run_factory() + k0, v0 = "tag0", "val0" + k1, v1 = "tag1", "val1" + tag0 = entities.RunTag(k0, v0) + tag1 = entities.RunTag(k1, v1) + self.store.set_tag(run.info.run_id, tag0) + self.store.set_tag(run.info.run_id, tag1) + # delete a tag and check whether it is correctly deleted. + self.store.delete_tag(run.info.run_id, k0) + run = self.store.get_run(run.info.run_id) + assert k0 not in run.data.tags + assert k1 in run.data.tags + assert run.data.tags[k1] == v1 + + # test that deleting a tag works correctly with multiple runs having the same tag. + run2 = self._run_factory(config=self._get_run_configs(run.info.experiment_id)) + self.store.set_tag(run.info.run_id, tag0) + self.store.set_tag(run2.info.run_id, tag0) + self.store.delete_tag(run.info.run_id, k0) + run = self.store.get_run(run.info.run_id) + run2 = self.store.get_run(run2.info.run_id) + assert k0 not in run.data.tags + assert k0 in run2.data.tags + # test that you cannot delete tags that don't exist. + with pytest.raises(MlflowException, match="No tag with name"): + self.store.delete_tag(run.info.run_id, "fakeTag") + # test that you cannot delete tags for nonexistent runs + with pytest.raises(MlflowException, match="Run with id=randomRunId not found"): + self.store.delete_tag("randomRunId", k0) + # test that you cannot delete tags for deleted runs. + self.store.delete_run(run.info.run_id) + with pytest.raises(MlflowException, match="must be in the 'active' state"): + self.store.delete_tag(run.info.run_id, k1) + + def test_get_metric_history(self): + run = self._run_factory() + + key = "test" + expected = [ + models.SqlMetric(key=key, value=0.6, timestamp=1, step=0).to_mlflow_entity(), + models.SqlMetric(key=key, value=0.7, timestamp=2, step=0).to_mlflow_entity(), + ] + + for metric in expected: + self.store.log_metric(run.info.run_id, metric) + + actual = self.store.get_metric_history(run.info.run_id, key) + + assert sorted( + [(m.key, m.value, m.timestamp) for m in expected], + ) == sorted( + [(m.key, m.value, m.timestamp) for m in actual], + ) + + def test_rename_experiment(self): + new_name = "new name" + experiment_id = self._experiment_factory("test name") + experiment = self.store.get_experiment(experiment_id) + time.sleep(0.01) + self.store.rename_experiment(experiment_id, new_name) + + renamed_experiment = self.store.get_experiment(experiment_id) + + assert renamed_experiment.name == new_name + assert renamed_experiment.last_update_time > experiment.last_update_time + + def test_update_run_info(self): + experiment_id = self._experiment_factory("test_update_run_info") + for new_status_string in models.RunStatusTypes: + run = self._run_factory(config=self._get_run_configs(experiment_id=experiment_id)) + endtime = get_current_time_millis() + actual = self.store.update_run_info( + run.info.run_id, RunStatus.from_string(new_status_string), endtime, None + ) + assert actual.status == new_status_string + assert actual.end_time == endtime + + # test updating run name without changing other attributes. + origin_run_info = self.store.get_run(run.info.run_id).info + updated_info = self.store.update_run_info(run.info.run_id, None, None, "name_abc2") + assert updated_info.run_name == "name_abc2" + assert updated_info.status == origin_run_info.status + assert updated_info.end_time == origin_run_info.end_time + + def test_update_run_name(self): + experiment_id = self._experiment_factory("test_update_run_name") + configs = self._get_run_configs(experiment_id=experiment_id) + + run_id = self.store.create_run(**configs).info.run_id + run = self.store.get_run(run_id) + assert run.info.run_name == configs["run_name"] + + self.store.update_run_info(run_id, RunStatus.FINISHED, 1000, "new name") + run = self.store.get_run(run_id) + assert run.info.run_name == "new name" + assert run.data.tags.get(mlflow_tags.MLFLOW_RUN_NAME) == "new name" + + self.store.update_run_info(run_id, RunStatus.FINISHED, 1000, None) + run = self.store.get_run(run_id) + assert run.info.run_name == "new name" + assert run.data.tags.get(mlflow_tags.MLFLOW_RUN_NAME) == "new name" + + self.store.update_run_info(run_id, RunStatus.FINISHED, 1000, "") + run = self.store.get_run(run_id) + assert run.info.run_name == "new name" + assert run.data.tags.get(mlflow_tags.MLFLOW_RUN_NAME) == "new name" + + self.store.delete_tag(run_id, mlflow_tags.MLFLOW_RUN_NAME) + run = self.store.get_run(run_id) + assert run.info.run_name == "new name" + assert run.data.tags.get(mlflow_tags.MLFLOW_RUN_NAME) is None + + self.store.update_run_info(run_id, RunStatus.FINISHED, 1000, "newer name") + run = self.store.get_run(run_id) + assert run.info.run_name == "newer name" + assert run.data.tags.get(mlflow_tags.MLFLOW_RUN_NAME) == "newer name" + + self.store.set_tag(run_id, entities.RunTag(mlflow_tags.MLFLOW_RUN_NAME, "newest name")) + run = self.store.get_run(run_id) + assert run.data.tags.get(mlflow_tags.MLFLOW_RUN_NAME) == "newest name" + assert run.info.run_name == "newest name" + + self.store.log_batch( + run_id, + metrics=[], + params=[], + tags=[entities.RunTag(mlflow_tags.MLFLOW_RUN_NAME, "batch name")], + ) + run = self.store.get_run(run_id) + assert run.data.tags.get(mlflow_tags.MLFLOW_RUN_NAME) == "batch name" + assert run.info.run_name == "batch name" + + def test_restore_experiment(self): + experiment_id = self._experiment_factory("helloexp") + exp = self.store.get_experiment(experiment_id) + assert exp.lifecycle_stage == entities.LifecycleStage.ACTIVE + + experiment_id = exp.experiment_id + self.store.delete_experiment(experiment_id) + + deleted = self.store.get_experiment(experiment_id) + assert deleted.experiment_id == experiment_id + assert deleted.lifecycle_stage == entities.LifecycleStage.DELETED + time.sleep(0.01) + self.store.restore_experiment(exp.experiment_id) + restored = self.store.get_experiment(exp.experiment_id) + assert restored.experiment_id == experiment_id + assert restored.lifecycle_stage == entities.LifecycleStage.ACTIVE + assert restored.last_update_time > deleted.last_update_time + + def test_delete_restore_run(self): + run = self._run_factory() + assert run.info.lifecycle_stage == entities.LifecycleStage.ACTIVE + + # Verify that active runs can be restored (run restoration is idempotent) + self.store.restore_run(run.info.run_id) + + # Verify that run deletion is idempotent + self.store.delete_run(run.info.run_id) + self.store.delete_run(run.info.run_id) + + deleted = self.store.get_run(run.info.run_id) + assert deleted.info.run_id == run.info.run_id + assert deleted.info.lifecycle_stage == entities.LifecycleStage.DELETED + with self.store.ManagedSessionMaker() as session: + assert self.store._get_run(session, deleted.info.run_id).deleted_time is not None + # Verify that restoration of a deleted run is idempotent + self.store.restore_run(run.info.run_id) + self.store.restore_run(run.info.run_id) + restored = self.store.get_run(run.info.run_id) + assert restored.info.run_id == run.info.run_id + assert restored.info.lifecycle_stage == entities.LifecycleStage.ACTIVE + with self.store.ManagedSessionMaker() as session: + assert self.store._get_run(session, restored.info.run_id).deleted_time is None + + def test_error_logging_to_deleted_run(self): + exp = self._experiment_factory("error_logging") + run_id = self._run_factory(self._get_run_configs(experiment_id=exp)).info.run_id + + self.store.delete_run(run_id) + assert self.store.get_run(run_id).info.lifecycle_stage == entities.LifecycleStage.DELETED + with pytest.raises(MlflowException, match=r"The run .+ must be in the 'active' state"): + self.store.log_param(run_id, entities.Param("p1345", "v1")) + + with pytest.raises(MlflowException, match=r"The run .+ must be in the 'active' state"): + self.store.log_metric(run_id, entities.Metric("m1345", 1.0, 123, 0)) + + with pytest.raises(MlflowException, match=r"The run .+ must be in the 'active' state"): + self.store.set_tag(run_id, entities.RunTag("t1345", "tv1")) + + # restore this run and try again + self.store.restore_run(run_id) + assert self.store.get_run(run_id).info.lifecycle_stage == entities.LifecycleStage.ACTIVE + self.store.log_param(run_id, entities.Param("p1345", "v22")) + self.store.log_metric(run_id, entities.Metric("m1345", 34.0, 85, 1)) # earlier timestamp + self.store.set_tag(run_id, entities.RunTag("t1345", "tv44")) + + run = self.store.get_run(run_id) + assert run.data.params == {"p1345": "v22"} + assert run.data.metrics == {"m1345": 34.0} + metric_history = self.store.get_metric_history(run_id, "m1345") + assert len(metric_history) == 1 + metric_obj = metric_history[0] + assert metric_obj.key == "m1345" + assert metric_obj.value == 34.0 + assert metric_obj.timestamp == 85 + assert metric_obj.step == 1 + assert {("t1345", "tv44")} <= set(run.data.tags.items()) + + # Tests for Search API + def _search( + self, + experiment_id, + filter_string=None, + run_view_type=ViewType.ALL, + max_results=SEARCH_MAX_RESULTS_DEFAULT, + ): + exps = [experiment_id] if isinstance(experiment_id, str) else experiment_id + return [ + r.info.run_id + for r in self.store.search_runs(exps, filter_string, run_view_type, max_results) + ] + + def get_ordered_runs(self, order_clauses, experiment_id): + return [ + r.data.tags[mlflow_tags.MLFLOW_RUN_NAME] + for r in self.store.search_runs( + experiment_ids=[experiment_id], + filter_string="", + run_view_type=ViewType.ALL, + order_by=order_clauses, + ) + ] + + def test_order_by_metric_tag_param(self): + experiment_id = self.store.create_experiment("order_by_metric") + + def create_and_log_run(names): + name = str(names[0]) + "/" + names[1] + run_id = self.store.create_run( + experiment_id, + user_id="MrDuck", + start_time=123, + tags=[entities.RunTag("metric", names[1])], + run_name=name, + ).info.run_id + if names[0] is not None: + self.store.log_metric(run_id, entities.Metric("x", float(names[0]), 1, 0)) + self.store.log_metric(run_id, entities.Metric("y", float(names[1]), 1, 0)) + self.store.log_param(run_id, entities.Param("metric", names[1])) + return run_id + + # the expected order in ascending sort is : + # inf > number > -inf > None > nan + for names in zip( + [None, "nan", "inf", "-inf", "-1000", "0", "0", "1000"], + ["1", "2", "3", "4", "5", "6", "7", "8"], + ): + create_and_log_run(names) + + # asc/asc + assert self.get_ordered_runs(["metrics.x asc", "metrics.y asc"], experiment_id) == [ + "-inf/4", + "-1000/5", + "0/6", + "0/7", + "1000/8", + "inf/3", + "nan/2", + "None/1", + ] + + assert self.get_ordered_runs(["metrics.x asc", "tag.metric asc"], experiment_id) == [ + "-inf/4", + "-1000/5", + "0/6", + "0/7", + "1000/8", + "inf/3", + "nan/2", + "None/1", + ] + + # asc/desc + assert self.get_ordered_runs(["metrics.x asc", "metrics.y desc"], experiment_id) == [ + "-inf/4", + "-1000/5", + "0/7", + "0/6", + "1000/8", + "inf/3", + "nan/2", + "None/1", + ] + + assert self.get_ordered_runs(["metrics.x asc", "tag.metric desc"], experiment_id) == [ + "-inf/4", + "-1000/5", + "0/7", + "0/6", + "1000/8", + "inf/3", + "nan/2", + "None/1", + ] + + # desc / asc + assert self.get_ordered_runs(["metrics.x desc", "metrics.y asc"], experiment_id) == [ + "inf/3", + "1000/8", + "0/6", + "0/7", + "-1000/5", + "-inf/4", + "nan/2", + "None/1", + ] + + # desc / desc + assert self.get_ordered_runs(["metrics.x desc", "param.metric desc"], experiment_id) == [ + "inf/3", + "1000/8", + "0/7", + "0/6", + "-1000/5", + "-inf/4", + "nan/2", + "None/1", + ] + + def test_order_by_attributes(self): + experiment_id = self.store.create_experiment("order_by_attributes") + + def create_run(start_time, end): + return self.store.create_run( + experiment_id, + user_id="MrDuck", + start_time=start_time, + tags=[], + run_name=str(end), + ).info.run_id + + start_time = 123 + for end in [234, None, 456, -123, 789, 123]: + run_id = create_run(start_time, end) + self.store.update_run_info( + run_id, run_status=RunStatus.FINISHED, end_time=end, run_name=None + ) + start_time += 1 + + # asc + assert self.get_ordered_runs(["attribute.end_time asc"], experiment_id) == [ + "-123", + "123", + "234", + "456", + "789", + "None", + ] + + # desc + assert self.get_ordered_runs(["attribute.end_time desc"], experiment_id) == [ + "789", + "456", + "234", + "123", + "-123", + "None", + ] + + # Sort priority correctly handled + assert self.get_ordered_runs( + ["attribute.start_time asc", "attribute.end_time desc"], experiment_id + ) == ["234", "None", "456", "-123", "789", "123"] + + def test_search_vanilla(self): + exp = self._experiment_factory("search_vanilla") + runs = [self._run_factory(self._get_run_configs(exp)).info.run_id for r in range(3)] + + assert sorted( + runs, + ) == sorted(self._search(exp, run_view_type=ViewType.ALL)) + assert sorted( + runs, + ) == sorted(self._search(exp, run_view_type=ViewType.ACTIVE_ONLY)) + assert self._search(exp, run_view_type=ViewType.DELETED_ONLY) == [] + + first = runs[0] + + self.store.delete_run(first) + assert sorted( + runs, + ) == sorted(self._search(exp, run_view_type=ViewType.ALL)) + assert sorted( + runs[1:], + ) == sorted(self._search(exp, run_view_type=ViewType.ACTIVE_ONLY)) + assert self._search(exp, run_view_type=ViewType.DELETED_ONLY) == [first] + + self.store.restore_run(first) + assert sorted( + runs, + ) == sorted(self._search(exp, run_view_type=ViewType.ALL)) + assert sorted( + runs, + ) == sorted(self._search(exp, run_view_type=ViewType.ACTIVE_ONLY)) + assert self._search(exp, run_view_type=ViewType.DELETED_ONLY) == [] + + def test_search_params(self): + experiment_id = self._experiment_factory("search_params") + r1 = self._run_factory(self._get_run_configs(experiment_id)).info.run_id + r2 = self._run_factory(self._get_run_configs(experiment_id)).info.run_id + + self.store.log_param(r1, entities.Param("generic_param", "p_val")) + self.store.log_param(r2, entities.Param("generic_param", "p_val")) + + self.store.log_param(r1, entities.Param("generic_2", "some value")) + self.store.log_param(r2, entities.Param("generic_2", "another value")) + + self.store.log_param(r1, entities.Param("p_a", "abc")) + self.store.log_param(r2, entities.Param("p_b", "ABC")) + + # test search returns both runs + filter_string = "params.generic_param = 'p_val'" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + # test search returns appropriate run (same key different values per run) + filter_string = "params.generic_2 = 'some value'" + assert self._search(experiment_id, filter_string) == [r1] + filter_string = "params.generic_2 = 'another value'" + assert self._search(experiment_id, filter_string) == [r2] + + filter_string = "params.generic_param = 'wrong_val'" + assert self._search(experiment_id, filter_string) == [] + + filter_string = "params.generic_param != 'p_val'" + assert self._search(experiment_id, filter_string) == [] + + filter_string = "params.generic_param != 'wrong_val'" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + filter_string = "params.generic_2 != 'wrong_val'" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + filter_string = "params.p_a = 'abc'" + assert self._search(experiment_id, filter_string) == [r1] + + filter_string = "params.p_a = 'ABC'" + assert self._search(experiment_id, filter_string) == [] + + filter_string = "params.p_a != 'ABC'" + assert self._search(experiment_id, filter_string) == [r1] + + filter_string = "params.p_b = 'ABC'" + assert self._search(experiment_id, filter_string) == [r2] + + filter_string = "params.generic_2 LIKE '%other%'" + assert self._search(experiment_id, filter_string) == [r2] + + filter_string = "params.generic_2 LIKE 'other%'" + assert self._search(experiment_id, filter_string) == [] + + filter_string = "params.generic_2 LIKE '%other'" + assert self._search(experiment_id, filter_string) == [] + + filter_string = "params.generic_2 LIKE 'other'" + assert self._search(experiment_id, filter_string) == [] + + filter_string = "params.generic_2 LIKE '%Other%'" + assert self._search(experiment_id, filter_string) == [] + + filter_string = "params.generic_2 ILIKE '%Other%'" + assert self._search(experiment_id, filter_string) == [r2] + + def test_search_tags(self): + experiment_id = self._experiment_factory("search_tags") + r1 = self._run_factory(self._get_run_configs(experiment_id)).info.run_id + r2 = self._run_factory(self._get_run_configs(experiment_id)).info.run_id + + self.store.set_tag(r1, entities.RunTag("generic_tag", "p_val")) + self.store.set_tag(r2, entities.RunTag("generic_tag", "p_val")) + + self.store.set_tag(r1, entities.RunTag("generic_2", "some value")) + self.store.set_tag(r2, entities.RunTag("generic_2", "another value")) + + self.store.set_tag(r1, entities.RunTag("p_a", "abc")) + self.store.set_tag(r2, entities.RunTag("p_b", "ABC")) + + # test search returns both runs + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string="tags.generic_tag = 'p_val'")) + assert self._search(experiment_id, filter_string="tags.generic_tag = 'P_VAL'") == [] + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string="tags.generic_tag != 'P_VAL'")) + # test search returns appropriate run (same key different values per run) + assert self._search(experiment_id, filter_string="tags.generic_2 = 'some value'") == [r1] + assert self._search(experiment_id, filter_string="tags.generic_2 = 'another value'") == [r2] + assert self._search(experiment_id, filter_string="tags.generic_tag = 'wrong_val'") == [] + assert self._search(experiment_id, filter_string="tags.generic_tag != 'p_val'") == [] + assert sorted( + [r1, r2], + ) == sorted( + self._search(experiment_id, filter_string="tags.generic_tag != 'wrong_val'"), + ) + assert sorted( + [r1, r2], + ) == sorted( + self._search(experiment_id, filter_string="tags.generic_2 != 'wrong_val'"), + ) + assert self._search(experiment_id, filter_string="tags.p_a = 'abc'") == [r1] + assert self._search(experiment_id, filter_string="tags.p_b = 'ABC'") == [r2] + assert self._search(experiment_id, filter_string="tags.generic_2 LIKE '%other%'") == [r2] + assert self._search(experiment_id, filter_string="tags.generic_2 LIKE '%Other%'") == [] + assert self._search(experiment_id, filter_string="tags.generic_2 LIKE 'other%'") == [] + assert self._search(experiment_id, filter_string="tags.generic_2 LIKE '%other'") == [] + assert self._search(experiment_id, filter_string="tags.generic_2 LIKE 'other'") == [] + assert self._search(experiment_id, filter_string="tags.generic_2 ILIKE '%Other%'") == [r2] + assert self._search( + experiment_id, + filter_string="tags.generic_2 ILIKE '%Other%' and tags.generic_tag = 'p_val'", + ) == [r2] + assert self._search( + experiment_id, + filter_string="tags.generic_2 ILIKE '%Other%' and tags.generic_tag ILIKE 'p_val'", + ) == [r2] + + def test_search_metrics(self): + experiment_id = self._experiment_factory("search_metric") + r1 = self._run_factory(self._get_run_configs(experiment_id)).info.run_id + r2 = self._run_factory(self._get_run_configs(experiment_id)).info.run_id + + self.store.log_metric(r1, entities.Metric("common", 1.0, 1, 0)) + self.store.log_metric(r2, entities.Metric("common", 1.0, 1, 0)) + + self.store.log_metric(r1, entities.Metric("measure_a", 1.0, 1, 0)) + self.store.log_metric(r2, entities.Metric("measure_a", 200.0, 2, 0)) + self.store.log_metric(r2, entities.Metric("measure_a", 400.0, 3, 0)) + + self.store.log_metric(r1, entities.Metric("m_a", 2.0, 2, 0)) + self.store.log_metric(r2, entities.Metric("m_b", 3.0, 2, 0)) + self.store.log_metric(r2, entities.Metric("m_b", 4.0, 8, 0)) # this is last timestamp + self.store.log_metric(r2, entities.Metric("m_b", 8.0, 3, 0)) + + filter_string = "metrics.common = 1.0" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + filter_string = "metrics.common > 0.0" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + filter_string = "metrics.common >= 0.0" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + filter_string = "metrics.common < 4.0" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + filter_string = "metrics.common <= 4.0" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + filter_string = "metrics.common != 1.0" + assert self._search(experiment_id, filter_string) == [] + + filter_string = "metrics.common >= 3.0" + assert self._search(experiment_id, filter_string) == [] + + filter_string = "metrics.common <= 0.75" + assert self._search(experiment_id, filter_string) == [] + + # tests for same metric name across runs with different values and timestamps + filter_string = "metrics.measure_a > 0.0" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + filter_string = "metrics.measure_a < 50.0" + assert self._search(experiment_id, filter_string) == [r1] + + filter_string = "metrics.measure_a < 1000.0" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + filter_string = "metrics.measure_a != -12.0" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + filter_string = "metrics.measure_a > 50.0" + assert self._search(experiment_id, filter_string) == [r2] + + filter_string = "metrics.measure_a = 1.0" + assert self._search(experiment_id, filter_string) == [r1] + + filter_string = "metrics.measure_a = 400.0" + assert self._search(experiment_id, filter_string) == [r2] + + # test search with unique metric keys + filter_string = "metrics.m_a > 1.0" + assert self._search(experiment_id, filter_string) == [r1] + + filter_string = "metrics.m_b > 1.0" + assert self._search(experiment_id, filter_string) == [r2] + + # there is a recorded metric this threshold but not last timestamp + filter_string = "metrics.m_b > 5.0" + assert self._search(experiment_id, filter_string) == [] + + # metrics matches last reported timestamp for 'm_b' + filter_string = "metrics.m_b = 4.0" + assert self._search(experiment_id, filter_string) == [r2] + + def test_search_attrs(self): + e1 = self._experiment_factory("search_attributes_1") + r1 = self._run_factory(self._get_run_configs(experiment_id=e1)).info.run_id + + e2 = self._experiment_factory("search_attrs_2") + r2 = self._run_factory(self._get_run_configs(experiment_id=e2)).info.run_id + + filter_string = "" + assert sorted( + [r1, r2], + ) == sorted(self._search([e1, e2], filter_string)) + + filter_string = "attribute.status != 'blah'" + assert sorted( + [r1, r2], + ) == sorted(self._search([e1, e2], filter_string)) + + filter_string = f"attribute.status = '{RunStatus.to_string(RunStatus.RUNNING)}'" + assert sorted( + [r1, r2], + ) == sorted(self._search([e1, e2], filter_string)) + + # change status for one of the runs + self.store.update_run_info(r2, RunStatus.FAILED, 300, None) + + filter_string = "attribute.status = 'RUNNING'" + assert self._search([e1, e2], filter_string) == [r1] + + filter_string = "attribute.status = 'FAILED'" + assert self._search([e1, e2], filter_string) == [r2] + + filter_string = "attribute.status != 'SCHEDULED'" + assert sorted( + [r1, r2], + ) == sorted(self._search([e1, e2], filter_string)) + + filter_string = "attribute.status = 'SCHEDULED'" + assert self._search([e1, e2], filter_string) == [] + + filter_string = "attribute.status = 'KILLED'" + assert self._search([e1, e2], filter_string) == [] + + if is_windows(): + expected_artifact_uri = ( + pathlib.Path.cwd().joinpath(ARTIFACT_URI, e1, r1, "artifacts").as_uri() + ) + filter_string = f"attr.artifact_uri = '{expected_artifact_uri}'" + else: + expected_artifact_uri = ( + pathlib.Path.cwd().joinpath(ARTIFACT_URI, e1, r1, "artifacts").as_posix() + ) + filter_string = f"attr.artifact_uri = '{expected_artifact_uri}'" + assert self._search([e1, e2], filter_string) == [r1] + + filter_string = f"attr.artifact_uri = '{ARTIFACT_URI}/{e1.upper()}/{r1.upper()}/artifacts'" + assert self._search([e1, e2], filter_string) == [] + + filter_string = f"attr.artifact_uri != '{ARTIFACT_URI}/{e1.upper()}/{r1.upper()}/artifacts'" + assert sorted( + [r1, r2], + ) == sorted(self._search([e1, e2], filter_string)) + + filter_string = f"attr.artifact_uri = '{ARTIFACT_URI}/{e2}/{r1}/artifacts'" + assert self._search([e1, e2], filter_string) == [] + + filter_string = "attribute.artifact_uri = 'random_artifact_path'" + assert self._search([e1, e2], filter_string) == [] + + filter_string = "attribute.artifact_uri != 'random_artifact_path'" + assert sorted( + [r1, r2], + ) == sorted(self._search([e1, e2], filter_string)) + + filter_string = f"attribute.artifact_uri LIKE '%{r1}%'" + assert self._search([e1, e2], filter_string) == [r1] + + filter_string = f"attribute.artifact_uri LIKE '%{r1[:16]}%'" + assert self._search([e1, e2], filter_string) == [r1] + + filter_string = f"attribute.artifact_uri LIKE '%{r1[-16:]}%'" + assert self._search([e1, e2], filter_string) == [r1] + + filter_string = f"attribute.artifact_uri LIKE '%{r1.upper()}%'" + assert self._search([e1, e2], filter_string) == [] + + filter_string = f"attribute.artifact_uri ILIKE '%{r1.upper()}%'" + assert self._search([e1, e2], filter_string) == [r1] + + filter_string = f"attribute.artifact_uri ILIKE '%{r1[:16].upper()}%'" + assert self._search([e1, e2], filter_string) == [r1] + + filter_string = f"attribute.artifact_uri ILIKE '%{r1[-16:].upper()}%'" + assert self._search([e1, e2], filter_string) == [r1] + + for k, v in {"experiment_id": e1, "lifecycle_stage": "ACTIVE"}.items(): + with pytest.raises(MlflowException, match=r"Invalid attribute key '.+' specified"): + self._search([e1, e2], f"attribute.{k} = '{v}'") + + def test_search_full(self): + experiment_id = self._experiment_factory("search_params") + r1 = self._run_factory(self._get_run_configs(experiment_id)).info.run_id + r2 = self._run_factory(self._get_run_configs(experiment_id)).info.run_id + + self.store.log_param(r1, entities.Param("generic_param", "p_val")) + self.store.log_param(r2, entities.Param("generic_param", "p_val")) + + self.store.log_param(r1, entities.Param("p_a", "abc")) + self.store.log_param(r2, entities.Param("p_b", "ABC")) + + self.store.log_metric(r1, entities.Metric("common", 1.0, 1, 0)) + self.store.log_metric(r2, entities.Metric("common", 1.0, 1, 0)) + + self.store.log_metric(r1, entities.Metric("m_a", 2.0, 2, 0)) + self.store.log_metric(r2, entities.Metric("m_b", 3.0, 2, 0)) + self.store.log_metric(r2, entities.Metric("m_b", 4.0, 8, 0)) + self.store.log_metric(r2, entities.Metric("m_b", 8.0, 3, 0)) + + filter_string = "params.generic_param = 'p_val' and metrics.common = 1.0" + assert sorted( + [r1, r2], + ) == sorted(self._search(experiment_id, filter_string)) + + # all params and metrics match + filter_string = ( + "params.generic_param = 'p_val' and metrics.common = 1.0 and metrics.m_a > 1.0" + ) + assert self._search(experiment_id, filter_string) == [r1] + + filter_string = ( + "params.generic_param = 'p_val' and metrics.common = 1.0 " + "and metrics.m_a > 1.0 and params.p_a LIKE 'a%'" + ) + assert self._search(experiment_id, filter_string) == [r1] + + filter_string = ( + "params.generic_param = 'p_val' and metrics.common = 1.0 " + "and metrics.m_a > 1.0 and params.p_a LIKE 'A%'" + ) + assert self._search(experiment_id, filter_string) == [] + + filter_string = ( + "params.generic_param = 'p_val' and metrics.common = 1.0 " + "and metrics.m_a > 1.0 and params.p_a ILIKE 'A%'" + ) + assert self._search(experiment_id, filter_string) == [r1] + + # test with mismatch param + filter_string = ( + "params.random_bad_name = 'p_val' and metrics.common = 1.0 and metrics.m_a > 1.0" + ) + assert self._search(experiment_id, filter_string) == [] + + # test with mismatch metric + filter_string = ( + "params.generic_param = 'p_val' and metrics.common = 1.0 and metrics.m_a > 100.0" + ) + assert self._search(experiment_id, filter_string) == [] + + def test_search_with_max_results(self): + exp = self._experiment_factory("search_with_max_results") + runs = [ + self._run_factory(self._get_run_configs(exp, start_time=r)).info.run_id + for r in range(1200) + ] + # reverse the ordering, since we created in increasing order of start_time + runs.reverse() + + assert runs[:1000] == self._search(exp) + for n in [0, 1, 2, 4, 8, 10, 20, 50, 100, 500, 1000, 1200, 2000]: + if n == 0 and self.store._get_dialect() == MSSQL: + # In SQL server, `max_results = 0` results in the following error: + # The number of rows provided for a FETCH clause must be greater then zero. + continue + assert runs[: min(1200, n)] == self._search(exp, max_results=n) + + with pytest.raises( + MlflowException, match=r"Invalid value for request parameter max_results" + ): + self._search(exp, max_results=int(1e10)) + + def test_search_with_deterministic_max_results(self): + exp = self._experiment_factory("test_search_with_deterministic_max_results") + # Create 10 runs with the same start_time. + # Sort based on run_id + runs = sorted( + [ + self._run_factory(self._get_run_configs(exp, start_time=10)).info.run_id + for r in range(10) + ] + ) + for n in [0, 1, 2, 4, 8, 10, 20]: + if n == 0 and self.store._get_dialect() == MSSQL: + # In SQL server, `max_results = 0` results in the following error: + # The number of rows provided for a FETCH clause must be greater then zero. + continue + assert runs[: min(10, n)] == self._search(exp, max_results=n) + + def test_search_runs_pagination(self): + exp = self._experiment_factory("test_search_runs_pagination") + # test returned token behavior + runs = sorted( + [ + self._run_factory(self._get_run_configs(exp, start_time=10)).info.run_id + for r in range(10) + ] + ) + result = self.store.search_runs([exp], None, ViewType.ALL, max_results=4) + assert [r.info.run_id for r in result] == runs[0:4] + assert result.token is not None + result = self.store.search_runs( + [exp], None, ViewType.ALL, max_results=4, page_token=result.token + ) + assert [r.info.run_id for r in result] == runs[4:8] + assert result.token is not None + result = self.store.search_runs( + [exp], None, ViewType.ALL, max_results=4, page_token=result.token + ) + assert [r.info.run_id for r in result] == runs[8:] + assert result.token is None + + def test_search_runs_run_name(self): + exp_id = self._experiment_factory("test_search_runs_pagination") + run1 = self._run_factory(dict(self._get_run_configs(exp_id), run_name="run_name1")) + run2 = self._run_factory(dict(self._get_run_configs(exp_id), run_name="run_name2")) + result = self.store.search_runs( + [exp_id], + filter_string="attributes.run_name = 'run_name1'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run1.info.run_id] + result = self.store.search_runs( + [exp_id], + filter_string="attributes.`Run name` = 'run_name1'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run1.info.run_id] + result = self.store.search_runs( + [exp_id], + filter_string="attributes.`run name` = 'run_name2'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run2.info.run_id] + result = self.store.search_runs( + [exp_id], + filter_string="attributes.`Run Name` = 'run_name2'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run2.info.run_id] + result = self.store.search_runs( + [exp_id], + filter_string="tags.`mlflow.runName` = 'run_name2'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run2.info.run_id] + + self.store.update_run_info( + run1.info.run_id, + RunStatus.FINISHED, + end_time=run1.info.end_time, + run_name="new_run_name1", + ) + result = self.store.search_runs( + [exp_id], + filter_string="attributes.run_name = 'new_run_name1'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run1.info.run_id] + + # TODO: Test attribute-based search after set_tag + + # Test run name filter works for runs logged in MLflow <= 1.29.0 + with self.store.ManagedSessionMaker() as session: + sql_run1 = session.query(SqlRun).filter(SqlRun.run_uuid == run1.info.run_id).one() + sql_run1.name = "" + + result = self.store.search_runs( + [exp_id], + filter_string="attributes.run_name = 'new_run_name1'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run1.info.run_id] + + result = self.store.search_runs( + [exp_id], + filter_string="tags.`mlflow.runName` = 'new_run_name1'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run1.info.run_id] + + def test_search_runs_run_id(self): + exp_id = self._experiment_factory("test_search_runs_run_id") + # Set start_time to ensure the search result is deterministic + run1 = self._run_factory(dict(self._get_run_configs(exp_id), start_time=1)) + run2 = self._run_factory(dict(self._get_run_configs(exp_id), start_time=2)) + run_id1 = run1.info.run_id + run_id2 = run2.info.run_id + + result = self.store.search_runs( + [exp_id], + filter_string=f"attributes.run_id = '{run_id1}'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run_id1] + + result = self.store.search_runs( + [exp_id], + filter_string=f"attributes.run_id != '{run_id1}'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run_id2] + + result = self.store.search_runs( + [exp_id], + filter_string=f"attributes.run_id IN ('{run_id1}')", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run_id1] + + result = self.store.search_runs( + [exp_id], + filter_string=f"attributes.run_id NOT IN ('{run_id1}')", + run_view_type=ViewType.ACTIVE_ONLY, + ) + + result = self.store.search_runs( + [exp_id], + filter_string=f"run_name = '{run1.info.run_name}' AND run_id IN ('{run_id1}')", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run_id1] + + for filter_string in [ + f"attributes.run_id IN ('{run_id1}','{run_id2}')", + f"attributes.run_id IN ('{run_id1}', '{run_id2}')", + f"attributes.run_id IN ('{run_id1}', '{run_id2}')", + ]: + result = self.store.search_runs( + [exp_id], filter_string=filter_string, run_view_type=ViewType.ACTIVE_ONLY + ) + assert [r.info.run_id for r in result] == [run_id2, run_id1] + + result = self.store.search_runs( + [exp_id], + filter_string=f"attributes.run_id NOT IN ('{run_id1}', '{run_id2}')", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert result == [] + + def test_search_runs_start_time_alias(self): + exp_id = self._experiment_factory("test_search_runs_start_time_alias") + # Set start_time to ensure the search result is deterministic + run1 = self._run_factory(dict(self._get_run_configs(exp_id), start_time=1)) + run2 = self._run_factory(dict(self._get_run_configs(exp_id), start_time=2)) + run_id1 = run1.info.run_id + run_id2 = run2.info.run_id + + result = self.store.search_runs( + [exp_id], + filter_string="attributes.run_name = 'name'", + run_view_type=ViewType.ACTIVE_ONLY, + order_by=["attributes.start_time DESC"], + ) + assert [r.info.run_id for r in result] == [run_id2, run_id1] + + result = self.store.search_runs( + [exp_id], + filter_string="attributes.run_name = 'name'", + run_view_type=ViewType.ACTIVE_ONLY, + order_by=["attributes.created ASC"], + ) + assert [r.info.run_id for r in result] == [run_id1, run_id2] + + result = self.store.search_runs( + [exp_id], + filter_string="attributes.run_name = 'name'", + run_view_type=ViewType.ACTIVE_ONLY, + order_by=["attributes.Created DESC"], + ) + assert [r.info.run_id for r in result] == [run_id2, run_id1] + + result = self.store.search_runs( + [exp_id], + filter_string="attributes.start_time > 0", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id1, run_id2} + + result = self.store.search_runs( + [exp_id], + filter_string="attributes.created > 1", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert [r.info.run_id for r in result] == [run_id2] + + result = self.store.search_runs( + [exp_id], + filter_string="attributes.Created > 2", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert result == [] + + def test_search_runs_datasets(self): + exp_id = self._experiment_factory("test_search_runs_datasets") + # Set start_time to ensure the search result is deterministic + run1 = self._run_factory(dict(self._get_run_configs(exp_id), start_time=1)) + run2 = self._run_factory(dict(self._get_run_configs(exp_id), start_time=3)) + run3 = self._run_factory(dict(self._get_run_configs(exp_id), start_time=2)) + + dataset1 = entities.Dataset( + name="name1", + digest="digest1", + source_type="st1", + source="source1", + schema="schema1", + profile="profile1", + ) + dataset2 = entities.Dataset( + name="name2", + digest="digest2", + source_type="st2", + source="source2", + schema="schema2", + profile="profile2", + ) + dataset3 = entities.Dataset( + name="name3", + digest="digest3", + source_type="st3", + source="source3", + schema="schema3", + profile="profile3", + ) + + test_tag = [entities.InputTag(key=MLFLOW_DATASET_CONTEXT, value="test")] + train_tag = [entities.InputTag(key=MLFLOW_DATASET_CONTEXT, value="train")] + eval_tag = [entities.InputTag(key=MLFLOW_DATASET_CONTEXT, value="eval")] + + inputs_run1 = [ + entities.DatasetInput(dataset1, train_tag), + entities.DatasetInput(dataset2, eval_tag), + ] + inputs_run2 = [ + entities.DatasetInput(dataset1, train_tag), + entities.DatasetInput(dataset3, eval_tag), + ] + inputs_run3 = [entities.DatasetInput(dataset2, test_tag)] + + self.store.log_inputs(run1.info.run_id, inputs_run1) + self.store.log_inputs(run2.info.run_id, inputs_run2) + self.store.log_inputs(run3.info.run_id, inputs_run3) + run_id1 = run1.info.run_id + run_id2 = run2.info.run_id + run_id3 = run3.info.run_id + + result = self.store.search_runs( + [exp_id], + filter_string="dataset.name = 'name1'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id2, run_id1} + + result = self.store.search_runs( + [exp_id], + filter_string="dataset.digest = 'digest2'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id3, run_id1} + + result = self.store.search_runs( + [exp_id], + filter_string="dataset.name = 'name4'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert set(result) == set() + + result = self.store.search_runs( + [exp_id], + filter_string="dataset.context = 'train'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id2, run_id1} + + result = self.store.search_runs( + [exp_id], + filter_string="dataset.context = 'test'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id3} + + result = self.store.search_runs( + [exp_id], + filter_string="dataset.context = 'test' and dataset.name = 'name2'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id3} + + result = self.store.search_runs( + [exp_id], + filter_string="dataset.name = 'name2' and dataset.context = 'test'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id3} + + result = self.store.search_runs( + [exp_id], + filter_string="datasets.name IN ('name1', 'name2')", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id3, run_id1, run_id2} + + result = self.store.search_runs( + [exp_id], + filter_string="datasets.digest IN ('digest1', 'digest2')", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id3, run_id1, run_id2} + + result = self.store.search_runs( + [exp_id], + filter_string="datasets.name LIKE 'Name%'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == set() + + result = self.store.search_runs( + [exp_id], + filter_string="datasets.name ILIKE 'Name%'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id3, run_id1, run_id2} + + result = self.store.search_runs( + [exp_id], + filter_string="datasets.context ILIKE 'test%'", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id3} + + result = self.store.search_runs( + [exp_id], + filter_string="datasets.context IN ('test', 'train')", + run_view_type=ViewType.ACTIVE_ONLY, + ) + assert {r.info.run_id for r in result} == {run_id3, run_id1, run_id2} + + def test_search_datasets(self): + exp_id1 = self._experiment_factory("test_search_datasets_1") + # Create an additional experiment to ensure we filter on specified experiment + # and search works on multiple experiments. + exp_id2 = self._experiment_factory("test_search_datasets_2") + + run1 = self._run_factory(dict(self._get_run_configs(exp_id1), start_time=1)) + run2 = self._run_factory(dict(self._get_run_configs(exp_id1), start_time=2)) + run3 = self._run_factory(dict(self._get_run_configs(exp_id2), start_time=3)) + + dataset1 = entities.Dataset( + name="name1", + digest="digest1", + source_type="st1", + source="source1", + schema="schema1", + profile="profile1", + ) + dataset2 = entities.Dataset( + name="name2", + digest="digest2", + source_type="st2", + source="source2", + schema="schema2", + profile="profile2", + ) + dataset3 = entities.Dataset( + name="name3", + digest="digest3", + source_type="st3", + source="source3", + schema="schema3", + profile="profile3", + ) + dataset4 = entities.Dataset( + name="name4", + digest="digest4", + source_type="st4", + source="source4", + schema="schema4", + profile="profile4", + ) + + test_tag = [entities.InputTag(key=MLFLOW_DATASET_CONTEXT, value="test")] + train_tag = [entities.InputTag(key=MLFLOW_DATASET_CONTEXT, value="train")] + eval_tag = [entities.InputTag(key=MLFLOW_DATASET_CONTEXT, value="eval")] + no_context_tag = [entities.InputTag(key="not_context", value="test")] + + inputs_run1 = [ + entities.DatasetInput(dataset1, train_tag), + entities.DatasetInput(dataset2, eval_tag), + entities.DatasetInput(dataset4, no_context_tag), + ] + inputs_run2 = [ + entities.DatasetInput(dataset1, train_tag), + entities.DatasetInput(dataset2, test_tag), + ] + inputs_run3 = [entities.DatasetInput(dataset3, train_tag)] + + self.store.log_inputs(run1.info.run_id, inputs_run1) + self.store.log_inputs(run2.info.run_id, inputs_run2) + self.store.log_inputs(run3.info.run_id, inputs_run3) + + # Verify actual and expected results are same size and that all elements are equal. + def assert_has_same_elements(actual_list, expected_list): + assert len(actual_list) == len(expected_list) + for actual in actual_list: + # Verify the expected results list contains same element. + isEqual = False + for expected in expected_list: + isEqual = actual == expected + if isEqual: + break + assert isEqual + + # Verify no results from exp_id2 are returned. + results = self.store._search_datasets([exp_id1]) + expected_results = [ + _DatasetSummary(exp_id1, dataset1.name, dataset1.digest, "train"), + _DatasetSummary(exp_id1, dataset2.name, dataset2.digest, "eval"), + _DatasetSummary(exp_id1, dataset2.name, dataset2.digest, "test"), + _DatasetSummary(exp_id1, dataset4.name, dataset4.digest, None), + ] + assert_has_same_elements(results, expected_results) + + # Verify results from both experiment are returned. + results = self.store._search_datasets([exp_id1, exp_id2]) + expected_results.append(_DatasetSummary(exp_id2, dataset3.name, dataset3.digest, "train")) + assert_has_same_elements(results, expected_results) + + def test_search_datasets_returns_no_more_than_max_results(self): + exp_id = self.store.create_experiment("test_search_datasets") + run = self._run_factory(dict(self._get_run_configs(exp_id), start_time=1)) + inputs = [] + # We intentionally add more than 1000 datasets here to test we only return 1000. + for i in range(1010): + dataset = entities.Dataset( + name="name" + str(i), + digest="digest" + str(i), + source_type="st" + str(i), + source="source" + str(i), + schema="schema" + str(i), + profile="profile" + str(i), + ) + input_tag = [entities.InputTag(key=MLFLOW_DATASET_CONTEXT, value=str(i))] + inputs.append(entities.DatasetInput(dataset, input_tag)) + + self.store.log_inputs(run.info.run_id, inputs) + + results = self.store._search_datasets([exp_id]) + assert len(results) == 1000 + + def test_log_batch(self): + experiment_id = self._experiment_factory("log_batch") + run_id = self._run_factory(self._get_run_configs(experiment_id)).info.run_id + metric_entities = [Metric("m1", 0.87, 12345, 0), Metric("m2", 0.49, 12345, 1)] + param_entities = [Param("p1", "p1val"), Param("p2", "p2val")] + tag_entities = [ + RunTag("t1", "t1val"), + RunTag("t2", "t2val"), + RunTag(MLFLOW_RUN_NAME, "my_run"), + ] + self.store.log_batch( + run_id=run_id, metrics=metric_entities, params=param_entities, tags=tag_entities + ) + run = self.store.get_run(run_id) + assert run.data.tags == {"t1": "t1val", "t2": "t2val", MLFLOW_RUN_NAME: "my_run"} + assert run.data.params == {"p1": "p1val", "p2": "p2val"} + metric_histories = sum( + [self.store.get_metric_history(run_id, key) for key in run.data.metrics], [] + ) + metrics = [(m.key, m.value, m.timestamp, m.step) for m in metric_histories] + assert set(metrics) == {("m1", 0.87, 12345, 0), ("m2", 0.49, 12345, 1)} + + def test_log_batch_limits(self): + # Test that log batch at the maximum allowed request size succeeds (i.e doesn't hit + # SQL limitations, etc) + experiment_id = self._experiment_factory("log_batch_limits") + run_id = self._run_factory(self._get_run_configs(experiment_id)).info.run_id + metric_tuples = [(f"m{i}", i, 12345, i * 2) for i in range(1000)] + metric_entities = [Metric(*metric_tuple) for metric_tuple in metric_tuples] + self.store.log_batch(run_id=run_id, metrics=metric_entities, params=[], tags=[]) + run = self.store.get_run(run_id) + metric_histories = sum( + [self.store.get_metric_history(run_id, key) for key in run.data.metrics], [] + ) + metrics = [(m.key, m.value, m.timestamp, m.step) for m in metric_histories] + assert set(metrics) == set(metric_tuples) + + def test_log_batch_param_overwrite_disallowed(self): + # Test that attempting to overwrite a param via log_batch results in an exception and that + # no partial data is logged + run = self._run_factory() + tkey = "my-param" + param = entities.Param(tkey, "orig-val") + self.store.log_param(run.info.run_id, param) + + overwrite_param = entities.Param(tkey, "newval") + tag = entities.RunTag("tag-key", "tag-val") + metric = entities.Metric("metric-key", 3.0, 12345, 0) + with pytest.raises( + MlflowException, match=r"Changing param values is not allowed" + ) as exception_context: + self.store.log_batch( + run.info.run_id, metrics=[metric], params=[overwrite_param], tags=[tag] + ) + assert exception_context.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) + self._verify_logged(self.store, run.info.run_id, metrics=[], params=[param], tags=[]) + + def test_log_batch_with_unchanged_and_new_params(self): + """ + Test case to ensure the following code works: + --------------------------------------------- + mlflow.log_params({"a": 0, "b": 1}) + mlflow.log_params({"a": 0, "c": 2}) + --------------------------------------------- + """ + run = self._run_factory() + self.store.log_batch( + run.info.run_id, + metrics=[], + params=[entities.Param("a", "0"), entities.Param("b", "1")], + tags=[], + ) + self.store.log_batch( + run.info.run_id, + metrics=[], + params=[entities.Param("a", "0"), entities.Param("c", "2")], + tags=[], + ) + self._verify_logged( + self.store, + run.info.run_id, + metrics=[], + params=[entities.Param("a", "0"), entities.Param("b", "1"), entities.Param("c", "2")], + tags=[], + ) + + def test_log_batch_param_overwrite_disallowed_single_req(self): + # Test that attempting to overwrite a param via log_batch results in an exception + run = self._run_factory() + pkey = "common-key" + param0 = entities.Param(pkey, "orig-val") + param1 = entities.Param(pkey, "newval") + tag = entities.RunTag("tag-key", "tag-val") + metric = entities.Metric("metric-key", 3.0, 12345, 0) + with pytest.raises( + MlflowException, match=r"Duplicate parameter keys have been submitted" + ) as exception_context: + self.store.log_batch( + run.info.run_id, metrics=[metric], params=[param0, param1], tags=[tag] + ) + assert exception_context.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) + self._verify_logged(self.store, run.info.run_id, metrics=[], params=[], tags=[]) + + def test_log_batch_accepts_empty_payload(self): + run = self._run_factory() + self.store.log_batch(run.info.run_id, metrics=[], params=[], tags=[]) + self._verify_logged(self.store, run.info.run_id, metrics=[], params=[], tags=[]) + + def test_log_batch_internal_error(self): + # Verify that internal errors during the DB save step for log_batch result in + # MlflowExceptions + run = self._run_factory() + + def _raise_exception_fn(*args, **kwargs): # pylint: disable=unused-argument + raise Exception("Some internal error") + + package = "mlflow.store.tracking.sqlalchemy_store.SqlAlchemyStore" + with mock.patch(package + "._log_metrics") as metric_mock, mock.patch( + package + "._log_params" + ) as param_mock, mock.patch(package + "._set_tags") as tags_mock: + metric_mock.side_effect = _raise_exception_fn + param_mock.side_effect = _raise_exception_fn + tags_mock.side_effect = _raise_exception_fn + for kwargs in [ + {"metrics": [Metric("a", 3, 1, 0)]}, + {"params": [Param("b", "c")]}, + {"tags": [RunTag("c", "d")]}, + ]: + log_batch_kwargs = {"metrics": [], "params": [], "tags": []} + log_batch_kwargs.update(kwargs) + with pytest.raises(MlflowException, match=r"Some internal error"): + self.store.log_batch(run.info.run_id, **log_batch_kwargs) + + def test_log_batch_nonexistent_run(self): + nonexistent_run_id = uuid.uuid4().hex + with pytest.raises( + MlflowException, match=rf"Run with id={nonexistent_run_id} not found" + ) as exception_context: + self.store.log_batch(nonexistent_run_id, [], [], []) + assert exception_context.value.error_code == ErrorCode.Name(RESOURCE_DOES_NOT_EXIST) + + def test_log_batch_params_idempotency(self): + run = self._run_factory() + params = [Param("p-key", "p-val")] + self.store.log_batch(run.info.run_id, metrics=[], params=params, tags=[]) + self.store.log_batch(run.info.run_id, metrics=[], params=params, tags=[]) + self._verify_logged(self.store, run.info.run_id, metrics=[], params=params, tags=[]) + + def test_log_batch_tags_idempotency(self): + run = self._run_factory() + self.store.log_batch( + run.info.run_id, metrics=[], params=[], tags=[RunTag("t-key", "t-val")] + ) + self.store.log_batch( + run.info.run_id, metrics=[], params=[], tags=[RunTag("t-key", "t-val")] + ) + self._verify_logged( + self.store, run.info.run_id, metrics=[], params=[], tags=[RunTag("t-key", "t-val")] + ) + + def test_log_batch_allows_tag_overwrite(self): + run = self._run_factory() + self.store.log_batch(run.info.run_id, metrics=[], params=[], tags=[RunTag("t-key", "val")]) + self.store.log_batch( + run.info.run_id, metrics=[], params=[], tags=[RunTag("t-key", "newval")] + ) + self._verify_logged( + self.store, run.info.run_id, metrics=[], params=[], tags=[RunTag("t-key", "newval")] + ) + + def test_log_batch_allows_tag_overwrite_single_req(self): + run = self._run_factory() + tags = [RunTag("t-key", "val"), RunTag("t-key", "newval")] + self.store.log_batch(run.info.run_id, metrics=[], params=[], tags=tags) + self._verify_logged(self.store, run.info.run_id, metrics=[], params=[], tags=[tags[-1]]) + + def test_log_batch_metrics(self): + run = self._run_factory() + + tkey = "blahmetric" + tval = 100.0 + metric = entities.Metric(tkey, tval, get_current_time_millis(), 0) + metric2 = entities.Metric(tkey, tval, get_current_time_millis() + 2, 0) + nan_metric = entities.Metric("NaN", float("nan"), 0, 0) + pos_inf_metric = entities.Metric("PosInf", float("inf"), 0, 0) + neg_inf_metric = entities.Metric("NegInf", -float("inf"), 0, 0) + + # duplicate metric and metric2 values should be eliminated + metrics = [metric, metric2, nan_metric, pos_inf_metric, neg_inf_metric, metric, metric2] + self.store._log_metrics(run.info.run_id, metrics) + + run = self.store.get_run(run.info.run_id) + assert tkey in run.data.metrics + assert run.data.metrics[tkey] == tval + + # SQL store _get_run method returns full history of recorded metrics. + # Should return duplicates as well + # MLflow RunData contains only the last reported values for metrics. + with self.store.ManagedSessionMaker() as session: + sql_run_metrics = self.store._get_run(session, run.info.run_id).metrics + assert len(sql_run_metrics) == 5 + assert len(run.data.metrics) == 4 + assert math.isnan(run.data.metrics["NaN"]) + assert run.data.metrics["PosInf"] == 1.7976931348623157e308 + assert run.data.metrics["NegInf"] == -1.7976931348623157e308 + + def test_log_batch_same_metric_repeated_single_req(self): + run = self._run_factory() + metric0 = Metric(key="metric-key", value=1, timestamp=2, step=0) + metric1 = Metric(key="metric-key", value=2, timestamp=3, step=0) + self.store.log_batch(run.info.run_id, params=[], metrics=[metric0, metric1], tags=[]) + self._verify_logged( + self.store, run.info.run_id, params=[], metrics=[metric0, metric1], tags=[] + ) + + def test_log_batch_same_metric_repeated_multiple_reqs(self): + run = self._run_factory() + metric0 = Metric(key="metric-key", value=1, timestamp=2, step=0) + metric1 = Metric(key="metric-key", value=2, timestamp=3, step=0) + self.store.log_batch(run.info.run_id, params=[], metrics=[metric0], tags=[]) + self._verify_logged(self.store, run.info.run_id, params=[], metrics=[metric0], tags=[]) + self.store.log_batch(run.info.run_id, params=[], metrics=[metric1], tags=[]) + self._verify_logged( + self.store, run.info.run_id, params=[], metrics=[metric0, metric1], tags=[] + ) + + def test_log_batch_same_metrics_repeated_multiple_reqs(self): + run = self._run_factory() + metric0 = Metric(key="metric-key", value=1, timestamp=2, step=0) + metric1 = Metric(key="metric-key", value=2, timestamp=3, step=0) + self.store.log_batch(run.info.run_id, params=[], metrics=[metric0, metric1], tags=[]) + self._verify_logged( + self.store, run.info.run_id, params=[], metrics=[metric0, metric1], tags=[] + ) + self.store.log_batch(run.info.run_id, params=[], metrics=[metric0, metric1], tags=[]) + self._verify_logged( + self.store, run.info.run_id, params=[], metrics=[metric0, metric1], tags=[] + ) + + def test_log_batch_null_metrics(self): + run = self._run_factory() + + tkey = "blahmetric" + tval = None + metric_1 = entities.Metric(tkey, tval, get_current_time_millis(), 0) + + tkey = "blahmetric2" + tval = None + metric_2 = entities.Metric(tkey, tval, get_current_time_millis(), 0) + + metrics = [metric_1, metric_2] + + with pytest.raises( + MlflowException, match=r"Got invalid value None for metric" + ) as exception_context: + self.store.log_batch(run.info.run_id, metrics=metrics, params=[], tags=[]) + assert exception_context.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) + + def test_log_batch_params_max_length_value(self): + run = self._run_factory() + param_entities = [Param("long param", "x" * 500), Param("short param", "xyz")] + expected_param_entities = [Param("long param", "x" * 500), Param("short param", "xyz")] + self.store.log_batch(run.info.run_id, [], param_entities, []) + self._verify_logged(self.store, run.info.run_id, [], expected_param_entities, []) + param_entities = [Param("long param", "x" * 1000)] + with pytest.raises(MlflowException, match="exceeded length"): + self.store.log_batch(run.info.run_id, [], param_entities, []) + + def test_upgrade_cli_idempotence(self): + # Repeatedly run `mlflow db upgrade` against our database, verifying that the command + # succeeds and that the DB has the latest schema + engine = sqlalchemy.create_engine(self.db_url) + assert _get_schema_version(engine) == _get_latest_schema_revision() + for _ in range(3): + invoke_cli_runner(mlflow.db.commands, ["upgrade", self.db_url]) + assert _get_schema_version(engine) == _get_latest_schema_revision() + engine.dispose() + + def test_metrics_materialization_upgrade_succeeds_and_produces_expected_latest_metric_values( + self, + ): + """ + Tests the ``89d4b8295536_create_latest_metrics_table`` migration by migrating and querying + the MLflow Tracking SQLite database located at + /mlflow/tests/resources/db/db_version_7ac759974ad8_with_metrics.sql. This database contains + metric entries populated by the following metrics generation script: + https://gist.github.com/dbczumar/343173c6b8982a0cc9735ff19b5571d9. + + First, the database is upgraded from its HEAD revision of + ``7ac755974ad8_update_run_tags_with_larger_limit`` to the latest revision via + ``mlflow db upgrade``. + + Then, the test confirms that the metric entries returned by calls + to ``SqlAlchemyStore.get_run()`` are consistent between the latest revision and the + ``7ac755974ad8_update_run_tags_with_larger_limit`` revision. This is confirmed by + invoking ``SqlAlchemyStore.get_run()`` for each run id that is present in the upgraded + database and comparing the resulting runs' metric entries to a JSON dump taken from the + SQLite database prior to the upgrade (located at + mlflow/tests/resources/db/db_version_7ac759974ad8_with_metrics_expected_values.json). + This JSON dump can be replicated by installing MLflow version 1.2.0 and executing the + following code from the directory containing this test suite: + + .. code-block:: python + + import json + import mlflow + from mlflow import MlflowClient + + mlflow.set_tracking_uri( + "sqlite:///../../resources/db/db_version_7ac759974ad8_with_metrics.sql" + ) + client = MlflowClient() + summary_metrics = { + run.info.run_id: run.data.metrics for run in client.search_runs(experiment_ids="0") + } + with open("dump.json", "w") as dump_file: + json.dump(summary_metrics, dump_file, indent=4) + + """ + current_dir = os.path.dirname(os.path.abspath(__file__)) + db_resources_path = os.path.normpath( + os.path.join(current_dir, os.pardir, os.pardir, "resources", "db") + ) + expected_metric_values_path = os.path.join( + db_resources_path, "db_version_7ac759974ad8_with_metrics_expected_values.json" + ) + with TempDir() as tmp_db_dir: + db_path = tmp_db_dir.path("tmp_db.sql") + db_url = "sqlite:///" + db_path + shutil.copyfile( + src=os.path.join(db_resources_path, "db_version_7ac759974ad8_with_metrics.sql"), + dst=db_path, + ) + + invoke_cli_runner(mlflow.db.commands, ["upgrade", db_url]) + store = self._get_store(db_uri=db_url) + with open(expected_metric_values_path) as f: + expected_metric_values = json.load(f) + + for run_id, expected_metrics in expected_metric_values.items(): + fetched_run = store.get_run(run_id=run_id) + assert fetched_run.data.metrics == expected_metrics + + def _generate_large_data(self, nb_runs=1000): + experiment_id = self.store.create_experiment("test_experiment") + + current_run = 0 + + run_ids = [] + metrics_list = [] + tags_list = [] + params_list = [] + latest_metrics_list = [] + + for _ in range(nb_runs): + run_id = self.store.create_run( + experiment_id=experiment_id, + start_time=current_run, + tags=[], + user_id="Anderson", + run_name="name", + ).info.run_uuid + + run_ids.append(run_id) + + for i in range(100): + metric = { + "key": f"mkey_{i}", + "value": i, + "timestamp": i * 2, + "step": i * 3, + "is_nan": False, + "run_uuid": run_id, + } + metrics_list.append(metric) + tag = { + "key": f"tkey_{i}", + "value": "tval_%s" % (current_run % 10), + "run_uuid": run_id, + } + tags_list.append(tag) + param = { + "key": f"pkey_{i}", + "value": "pval_%s" % ((current_run + 1) % 11), + "run_uuid": run_id, + } + params_list.append(param) + latest_metrics_list.append( + { + "key": "mkey_0", + "value": current_run, + "timestamp": 100 * 2, + "step": 100 * 3, + "is_nan": False, + "run_uuid": run_id, + } + ) + current_run += 1 + + with self.store.engine.begin() as conn: + conn.execute(sqlalchemy.insert(SqlParam), params_list) + conn.execute(sqlalchemy.insert(SqlMetric), metrics_list) + conn.execute(sqlalchemy.insert(SqlLatestMetric), latest_metrics_list) + conn.execute(sqlalchemy.insert(SqlTag), tags_list) + + return experiment_id, run_ids + + def test_search_runs_returns_expected_results_with_large_experiment(self): + """ + This case tests the SQLAlchemyStore implementation of the SearchRuns API to ensure + that search queries over an experiment containing many runs, each with a large number + of metrics, parameters, and tags, are performant and return the expected results. + """ + experiment_id, run_ids = self._generate_large_data() + + run_results = self.store.search_runs([experiment_id], None, ViewType.ALL, max_results=100) + assert len(run_results) == 100 + # runs are sorted by desc start_time + assert [run.info.run_id for run in run_results] == list(reversed(run_ids[900:])) + + def test_search_runs_correctly_filters_large_data(self): + experiment_id, _ = self._generate_large_data(1000) + + run_results = self.store.search_runs( + [experiment_id], + "metrics.mkey_0 < 26 and metrics.mkey_0 > 5 ", + ViewType.ALL, + max_results=50, + ) + assert len(run_results) == 20 + + run_results = self.store.search_runs( + [experiment_id], + "metrics.mkey_0 < 26 and metrics.mkey_0 > 5 and tags.tkey_0 = 'tval_0' ", + ViewType.ALL, + max_results=10, + ) + assert len(run_results) == 2 # 20 runs between 9 and 26, 2 of which have a 0 tkey_0 value + + run_results = self.store.search_runs( + [experiment_id], + "metrics.mkey_0 < 26 and metrics.mkey_0 > 5 " + "and tags.tkey_0 = 'tval_0' " + "and params.pkey_0 = 'pval_0'", + ViewType.ALL, + max_results=5, + ) + assert len(run_results) == 1 # 2 runs on previous request, 1 of which has a 0 pkey_0 value + + def test_search_runs_keep_all_runs_when_sorting(self): + experiment_id = self.store.create_experiment("test_experiment1") + + r1 = self.store.create_run( + experiment_id=experiment_id, start_time=0, tags=[], user_id="Me", run_name="name" + ).info.run_uuid + r2 = self.store.create_run( + experiment_id=experiment_id, start_time=0, tags=[], user_id="Me", run_name="name" + ).info.run_uuid + self.store.set_tag(r1, RunTag(key="t1", value="1")) + self.store.set_tag(r1, RunTag(key="t2", value="1")) + self.store.set_tag(r2, RunTag(key="t2", value="1")) + + run_results = self.store.search_runs( + [experiment_id], None, ViewType.ALL, max_results=1000, order_by=["tag.t1"] + ) + assert len(run_results) == 2 + + def test_try_get_run_tag(self): + run = self._run_factory() + self.store.set_tag(run.info.run_id, entities.RunTag("k1", "v1")) + self.store.set_tag(run.info.run_id, entities.RunTag("k2", "v2")) + + with self.store.ManagedSessionMaker() as session: + tag = self.store._try_get_run_tag(session, run.info.run_id, "k0") + assert tag is None + + tag = self.store._try_get_run_tag(session, run.info.run_id, "k1") + assert tag.key == "k1" + assert tag.value == "v1" + + tag = self.store._try_get_run_tag(session, run.info.run_id, "k2") + assert tag.key == "k2" + assert tag.value == "v2" + + def test_get_metric_history_on_non_existent_metric_key(self): + experiment_id = self._experiment_factory("test_exp")[0] + run = self.store.create_run( + experiment_id=experiment_id, user_id="user", start_time=0, tags=[], run_name="name" + ) + run_id = run.info.run_id + metrics = self.store.get_metric_history(run_id, "test_metric") + assert metrics == [] + + def test_insert_large_text_in_dataset_table(self): + with self.store.engine.begin() as conn: + # cursor = conn.cursor() + dataset_source = "a" * 65535 # 65535 is the max size for a TEXT column + dataset_profile = "a" * 16777215 # 16777215 is the max size for a MEDIUMTEXT column + conn.execute( + sqlalchemy.sql.text( + f""" + INSERT INTO datasets + (dataset_uuid, + experiment_id, + name, + digest, + dataset_source_type, + dataset_source, + dataset_schema, + dataset_profile) + VALUES + ('test_uuid', + 0, + 'test_name', + 'test_digest', + 'test_source_type', + '{dataset_source}', ' + test_schema', + '{dataset_profile}') + """ + ) + ) + results = conn.execute( + sqlalchemy.sql.text("SELECT dataset_source, dataset_profile from datasets") + ).first() + dataset_source_from_db = results[0] + assert len(dataset_source_from_db) == len(dataset_source) + dataset_profile_from_db = results[1] + assert len(dataset_profile_from_db) == len(dataset_profile) + + # delete contents of datasets table + conn.execute(sqlalchemy.sql.text("DELETE FROM datasets")) + + def test_log_inputs_and_retrieve_runs_behaves_as_expected(self): + experiment_id = self._experiment_factory("test exp") + run1 = self._run_factory(config=self._get_run_configs(experiment_id, start_time=1)) + run2 = self._run_factory(config=self._get_run_configs(experiment_id, start_time=3)) + run3 = self._run_factory(config=self._get_run_configs(experiment_id, start_time=2)) + + dataset1 = entities.Dataset( + name="name1", + digest="digest1", + source_type="st1", + source="source1", + schema="schema1", + profile="profile1", + ) + dataset2 = entities.Dataset( + name="name2", + digest="digest2", + source_type="st2", + source="source2", + schema="schema2", + profile="profile2", + ) + dataset3 = entities.Dataset( + name="name3", + digest="digest3", + source_type="st3", + source="source3", + schema="schema3", + profile="profile3", + ) + + tags1 = [ + entities.InputTag(key="key1", value="value1"), + entities.InputTag(key="key2", value="value2"), + ] + tags2 = [ + entities.InputTag(key="key3", value="value3"), + entities.InputTag(key="key4", value="value4"), + ] + tags3 = [ + entities.InputTag(key="key5", value="value5"), + entities.InputTag(key="key6", value="value6"), + ] + + inputs_run1 = [ + entities.DatasetInput(dataset1, tags1), + entities.DatasetInput(dataset2, tags1), + ] + inputs_run2 = [ + entities.DatasetInput(dataset1, tags2), + entities.DatasetInput(dataset3, tags3), + ] + inputs_run3 = [entities.DatasetInput(dataset2, tags3)] + + self.store.log_inputs(run1.info.run_id, inputs_run1) + self.store.log_inputs(run2.info.run_id, inputs_run2) + self.store.log_inputs(run3.info.run_id, inputs_run3) + + run1 = self.store.get_run(run1.info.run_id) + assert_dataset_inputs_equal(run1.inputs.dataset_inputs, inputs_run1) + run2 = self.store.get_run(run2.info.run_id) + assert_dataset_inputs_equal(run2.inputs.dataset_inputs, inputs_run2) + run3 = self.store.get_run(run3.info.run_id) + assert_dataset_inputs_equal(run3.inputs.dataset_inputs, inputs_run3) + + search_results_1 = self.store.search_runs( + [experiment_id], None, ViewType.ALL, max_results=4, order_by=["start_time ASC"] + ) + run1 = search_results_1[0] + assert_dataset_inputs_equal(run1.inputs.dataset_inputs, inputs_run1) + run2 = search_results_1[2] + assert_dataset_inputs_equal(run2.inputs.dataset_inputs, inputs_run2) + run3 = search_results_1[1] + assert_dataset_inputs_equal(run3.inputs.dataset_inputs, inputs_run3) + + search_results_2 = self.store.search_runs( + [experiment_id], None, ViewType.ALL, max_results=4, order_by=["start_time DESC"] + ) + run1 = search_results_2[2] + assert_dataset_inputs_equal(run1.inputs.dataset_inputs, inputs_run1) + run2 = search_results_2[0] + assert_dataset_inputs_equal(run2.inputs.dataset_inputs, inputs_run2) + run3 = search_results_2[1] + assert_dataset_inputs_equal(run3.inputs.dataset_inputs, inputs_run3) + + def test_log_input_multiple_times_does_not_overwrite_tags_or_dataset(self): + experiment_id = self._experiment_factory("test exp") + run = self._run_factory(config=self._get_run_configs(experiment_id)) + dataset = entities.Dataset( + name="name", + digest="digest", + source_type="st", + source="source", + schema="schema", + profile="profile", + ) + tags = [ + entities.InputTag(key="key1", value="value1"), + entities.InputTag(key="key2", value="value2"), + ] + self.store.log_inputs(run.info.run_id, [entities.DatasetInput(dataset, tags)]) + + for i in range(3): + # Since the dataset name and digest are the same as the previously logged dataset, + # no changes should be made + overwrite_dataset = entities.Dataset( + name="name", + digest="digest", + source_type="st{i}", + source=f"source{i}", + schema=f"schema{i}", + profile=f"profile{i}", + ) + # Since the dataset has already been logged as an input to the run, no changes should be + # made to the input tags + overwrite_tags = [ + entities.InputTag(key=f"key{i}", value=f"value{i}"), + entities.InputTag(key=f"key{i+1}", value=f"value{i+1}"), + ] + self.store.log_inputs( + run.info.run_id, [entities.DatasetInput(overwrite_dataset, overwrite_tags)] + ) + + run = self.store.get_run(run.info.run_id) + assert_dataset_inputs_equal( + run.inputs.dataset_inputs, [entities.DatasetInput(dataset, tags)] + ) + + # Logging a dataset with a different name or digest to the original run should result + # in the addition of another dataset input + other_name_dataset = entities.Dataset( + name="other_name", + digest="digest", + source_type="st", + source="source", + schema="schema", + profile="profile", + ) + other_name_input_tags = [entities.InputTag(key="k1", value="v1")] + self.store.log_inputs( + run.info.run_id, [entities.DatasetInput(other_name_dataset, other_name_input_tags)] + ) + + other_digest_dataset = entities.Dataset( + name="name", + digest="other_digest", + source_type="st", + source="source", + schema="schema", + profile="profile", + ) + other_digest_input_tags = [entities.InputTag(key="k2", value="v2")] + self.store.log_inputs( + run.info.run_id, [entities.DatasetInput(other_digest_dataset, other_digest_input_tags)] + ) + + run = self.store.get_run(run.info.run_id) + assert_dataset_inputs_equal( + run.inputs.dataset_inputs, + [ + entities.DatasetInput(dataset, tags), + entities.DatasetInput(other_name_dataset, other_name_input_tags), + entities.DatasetInput(other_digest_dataset, other_digest_input_tags), + ], + ) + + # Logging the same dataset with different tags to new runs should result in each run + # having its own new input tags and the same dataset input + for i in range(3): + new_run = self.store.create_run( + experiment_id=experiment_id, + user_id="user", + start_time=0, + tags=[], + run_name=None, + ) + new_tags = [ + entities.InputTag(key=f"key{i}", value=f"value{i}"), + entities.InputTag(key=f"key{i+1}", value=f"value{i+1}"), + ] + self.store.log_inputs(new_run.info.run_id, [entities.DatasetInput(dataset, new_tags)]) + new_run = self.store.get_run(new_run.info.run_id) + assert_dataset_inputs_equal( + new_run.inputs.dataset_inputs, [entities.DatasetInput(dataset, new_tags)] + ) + + def test_log_inputs_handles_case_when_no_datasets_are_specified(self): + experiment_id = self._experiment_factory("test exp") + run = self._run_factory(config=self._get_run_configs(experiment_id)) + self.store.log_inputs(run.info.run_id) + self.store.log_inputs(run.info.run_id, datasets=None) + + def test_log_inputs_fails_with_missing_inputs(self): + experiment_id = self._experiment_factory("test exp") + run = self._run_factory(config=self._get_run_configs(experiment_id)) + + dataset = entities.Dataset( + name="name1", digest="digest1", source_type="type", source="source" + ) + + tags = [entities.InputTag(key="key", value="train")] + + # Test input key missing + with pytest.raises(MlflowException, match="InputTag key cannot be None"): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=[entities.InputTag(key=None, value="train")], dataset=dataset + ) + ], + ) + + # Test input value missing + with pytest.raises(MlflowException, match="InputTag value cannot be None"): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=[entities.InputTag(key="key", value=None)], dataset=dataset + ) + ], + ) + + # Test dataset name missing + with pytest.raises(MlflowException, match="Dataset name cannot be None"): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=tags, + dataset=entities.Dataset( + name=None, digest="digest1", source_type="type", source="source" + ), + ) + ], + ) + + # Test dataset digest missing + with pytest.raises(MlflowException, match="Dataset digest cannot be None"): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=tags, + dataset=entities.Dataset( + name="name", digest=None, source_type="type", source="source" + ), + ) + ], + ) + + # Test dataset source type missing + with pytest.raises(MlflowException, match="Dataset source_type cannot be None"): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=tags, + dataset=entities.Dataset( + name="name", digest="digest1", source_type=None, source="source" + ), + ) + ], + ) + + # Test dataset source missing + with pytest.raises(MlflowException, match="Dataset source cannot be None"): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=tags, + dataset=entities.Dataset( + name="name", digest="digest1", source_type="type", source=None + ), + ) + ], + ) + + def test_log_inputs_fails_with_too_large_inputs(self): + experiment_id = self._experiment_factory("test exp") + run = self._run_factory(config=self._get_run_configs(experiment_id)) + + dataset = entities.Dataset( + name="name1", digest="digest1", source_type="type", source="source" + ) + + tags = [entities.InputTag(key="key", value="train")] + + # Test input key too large (limit is 255) + with pytest.raises(MlflowException, match="InputTag key exceeds the maximum length of 255"): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=[entities.InputTag(key="a" * 256, value="train")], dataset=dataset + ) + ], + ) + + # Test input value too large (limit is 500) + with pytest.raises( + MlflowException, match="InputTag value exceeds the maximum length of 500" + ): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=[entities.InputTag(key="key", value="a" * 501)], dataset=dataset + ) + ], + ) + + # Test dataset name too large (limit is 500) + with pytest.raises(MlflowException, match="Dataset name exceeds the maximum length of 500"): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=tags, + dataset=entities.Dataset( + name="a" * 501, digest="digest1", source_type="type", source="source" + ), + ) + ], + ) + + # Test dataset digest too large (limit is 36) + with pytest.raises( + MlflowException, match="Dataset digest exceeds the maximum length of 36" + ): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=tags, + dataset=entities.Dataset( + name="name", digest="a" * 37, source_type="type", source="source" + ), + ) + ], + ) + + # Test dataset source too large (limit is 65535) + with pytest.raises( + MlflowException, match="Dataset source exceeds the maximum length of 65535" + ): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=tags, + dataset=entities.Dataset( + name="name", digest="digest", source_type="type", source="a" * 65536 + ), + ) + ], + ) + + # Test dataset schema too large (limit is 65535) + with pytest.raises( + MlflowException, match="Dataset schema exceeds the maximum length of 65535" + ): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=tags, + dataset=entities.Dataset( + name="name", + digest="digest", + source_type="type", + source="source", + schema="a" * 65536, + ), + ) + ], + ) + + # Test dataset profile too large (limit is 16777215) + with pytest.raises( + MlflowException, match="Dataset profile exceeds the maximum length of 16777215" + ): + self.store.log_inputs( + run.info.run_id, + [ + entities.DatasetInput( + tags=tags, + dataset=entities.Dataset( + name="name", + digest="digest", + source_type="type", + source="source", + profile="a" * 16777216, + ), + ) + ], + ) + + def test_log_inputs_with_duplicates_in_single_request(self): + experiment_id = self._experiment_factory("test exp") + run1 = self._run_factory(config=self._get_run_configs(experiment_id, start_time=1)) + + dataset1 = entities.Dataset( + name="name1", + digest="digest1", + source_type="st1", + source="source1", + schema="schema1", + profile="profile1", + ) + + tags1 = [ + entities.InputTag(key="key1", value="value1"), + entities.InputTag(key="key2", value="value2"), + ] + + inputs_run1 = [ + entities.DatasetInput(dataset1, tags1), + entities.DatasetInput(dataset1, tags1), + ] + + self.store.log_inputs(run1.info.run_id, inputs_run1) + run1 = self.store.get_run(run1.info.run_id) + assert_dataset_inputs_equal( + run1.inputs.dataset_inputs, [entities.DatasetInput(dataset1, tags1)] + ) + + +def test_sqlalchemy_store_behaves_as_expected_with_inmemory_sqlite_db(monkeypatch): + monkeypatch.setenv("MLFLOW_SQLALCHEMYSTORE_POOLCLASS", "SingletonThreadPool") + store = SqlAlchemyStore("sqlite:///:memory:", ARTIFACT_URI) + experiment_id = store.create_experiment(name="exp1") + run = store.create_run( + experiment_id=experiment_id, user_id="user", start_time=0, tags=[], run_name="name" + ) + run_id = run.info.run_id + metric = entities.Metric("mymetric", 1, 0, 0) + store.log_metric(run_id=run_id, metric=metric) + param = entities.Param("myparam", "A") + store.log_param(run_id=run_id, param=param) + fetched_run = store.get_run(run_id=run_id) + assert fetched_run.info.run_id == run_id + assert metric.key in fetched_run.data.metrics + assert param.key in fetched_run.data.params + + +def test_sqlalchemy_store_can_be_initialized_when_default_experiment_has_been_deleted( + tmp_sqlite_uri, +): + store = SqlAlchemyStore(tmp_sqlite_uri, ARTIFACT_URI) + store.delete_experiment("0") + assert store.get_experiment("0").lifecycle_stage == entities.LifecycleStage.DELETED + SqlAlchemyStore(tmp_sqlite_uri, ARTIFACT_URI) + + +class TestSqlAlchemyStoreMigratedDB(TestSqlAlchemyStore): + """ + Test case where user has an existing DB with schema generated before MLflow 1.0, + then migrates their DB. + """ + + def setUp(self): + super()._setup_db_uri() + engine = sqlalchemy.create_engine(self.db_url) + InitialBase.metadata.create_all(engine) + engine.dispose() + invoke_cli_runner(mlflow.db.commands, ["upgrade", self.db_url]) + self.store = SqlAlchemyStore(self.db_url, ARTIFACT_URI) + + +class TextClauseMatcher: + def __init__(self, text): + self.text = text + + def __eq__(self, other): + return self.text == other.text + + +@mock.patch("sqlalchemy.orm.session.Session", spec=True) +def test_set_zero_value_insertion_for_autoincrement_column_MYSQL(mock_session): + mock_store = mock.Mock(SqlAlchemyStore) + mock_store.db_type = MYSQL + SqlAlchemyStore._set_zero_value_insertion_for_autoincrement_column(mock_store, mock_session) + mock_session.execute.assert_called_with( + TextClauseMatcher("SET @@SESSION.sql_mode='NO_AUTO_VALUE_ON_ZERO';") + ) + + +@mock.patch("sqlalchemy.orm.session.Session", spec=True) +def test_set_zero_value_insertion_for_autoincrement_column_MSSQL(mock_session): + mock_store = mock.Mock(SqlAlchemyStore) + mock_store.db_type = MSSQL + SqlAlchemyStore._set_zero_value_insertion_for_autoincrement_column(mock_store, mock_session) + mock_session.execute.assert_called_with( + TextClauseMatcher("SET IDENTITY_INSERT experiments ON;") + ) + + +@mock.patch("sqlalchemy.orm.session.Session", spec=True) +def test_unset_zero_value_insertion_for_autoincrement_column_MYSQL(mock_session): + mock_store = mock.Mock(SqlAlchemyStore) + mock_store.db_type = MYSQL + SqlAlchemyStore._unset_zero_value_insertion_for_autoincrement_column(mock_store, mock_session) + mock_session.execute.assert_called_with(TextClauseMatcher("SET @@SESSION.sql_mode='';")) + + +@mock.patch("sqlalchemy.orm.session.Session", spec=True) +def test_unset_zero_value_insertion_for_autoincrement_column_MSSQL(mock_session): + mock_store = mock.Mock(SqlAlchemyStore) + mock_store.db_type = MSSQL + SqlAlchemyStore._unset_zero_value_insertion_for_autoincrement_column(mock_store, mock_session) + mock_session.execute.assert_called_with( + TextClauseMatcher("SET IDENTITY_INSERT experiments OFF;") + ) + + +def test_get_attribute_name(): + assert models.SqlRun.get_attribute_name("artifact_uri") == "artifact_uri" + assert models.SqlRun.get_attribute_name("status") == "status" + assert models.SqlRun.get_attribute_name("start_time") == "start_time" + assert models.SqlRun.get_attribute_name("end_time") == "end_time" + assert models.SqlRun.get_attribute_name("deleted_time") == "deleted_time" + assert models.SqlRun.get_attribute_name("run_name") == "name" + assert models.SqlRun.get_attribute_name("run_id") == "run_uuid" + + # we want this to break if a searchable or orderable attribute has been added + # and not referred to in this test + # searchable attributes are also orderable + assert len(entities.RunInfo.get_orderable_attributes()) == 7 + + +def test_get_orderby_clauses(tmp_sqlite_uri): + store = SqlAlchemyStore(tmp_sqlite_uri, ARTIFACT_URI) + with store.ManagedSessionMaker() as session: + # test that ['runs.start_time DESC', 'SqlRun.run_uuid'] is returned by default + parsed = [str(x) for x in _get_orderby_clauses([], session)[1]] + assert parsed == ["runs.start_time DESC", "SqlRun.run_uuid"] + + # test that the given 'start_time' replaces the default one ('runs.start_time DESC') + parsed = [str(x) for x in _get_orderby_clauses(["attribute.start_time ASC"], session)[1]] + assert "SqlRun.start_time" in parsed + assert "SqlRun.start_time DESC" not in parsed + + # test that an exception is raised when 'order_by' contains duplicates + match = "`order_by` contains duplicate fields" + with pytest.raises(MlflowException, match=match): + _get_orderby_clauses(["attribute.start_time", "attribute.start_time"], session) + + with pytest.raises(MlflowException, match=match): + _get_orderby_clauses(["param.p", "param.p"], session) + + with pytest.raises(MlflowException, match=match): + _get_orderby_clauses(["metric.m", "metric.m"], session) + + with pytest.raises(MlflowException, match=match): + _get_orderby_clauses(["tag.t", "tag.t"], session) + + # test that an exception is NOT raised when key types are different + _get_orderby_clauses(["param.a", "metric.a", "tag.a"], session) + + select_clause, parsed, _ = _get_orderby_clauses(["metric.a"], session) + select_clause = [str(x) for x in select_clause] + parsed = [str(x) for x in parsed] + # test that "=" is used rather than "is" when comparing to True + assert "is_nan = true" in select_clause[0] + assert "value IS NULL" in select_clause[0] + # test that clause name is in parsed + assert "clause_1" in parsed[0] + + +def _assert_create_experiment_appends_to_artifact_uri_path_correctly( + artifact_root_uri, expected_artifact_uri_format +): + # Patch `is_local_uri` to prevent the SqlAlchemy store from attempting to create local + # filesystem directories for file URI and POSIX path test cases + with mock.patch("mlflow.store.tracking.sqlalchemy_store.is_local_uri", return_value=False): + with TempDir() as tmp: + dbfile_path = tmp.path("db") + store = SqlAlchemyStore( + db_uri="sqlite:///" + dbfile_path, default_artifact_root=artifact_root_uri + ) + exp_id = store.create_experiment(name="exp") + exp = store.get_experiment(exp_id) + cwd = Path.cwd().as_posix() + drive = Path.cwd().drive + if is_windows() and expected_artifact_uri_format.startswith("file:"): + cwd = f"/{cwd}" + drive = f"{drive}/" + assert exp.artifact_location == expected_artifact_uri_format.format( + e=exp_id, cwd=cwd, drive=drive + ) + + +@pytest.mark.skipif(not is_windows(), reason="This test only passes on Windows") +@pytest.mark.parametrize( + ("input_uri", "expected_uri"), + [ + ("file://my_server/my_path/my_sub_path", "file://my_server/my_path/my_sub_path/{e}"), + ("path/to/local/folder", "file://{cwd}/path/to/local/folder/{e}"), + ("/path/to/local/folder", "file:///{drive}path/to/local/folder/{e}"), + ("#path/to/local/folder?", "file://{cwd}/{e}#path/to/local/folder?"), + ("file:path/to/local/folder", "file://{cwd}/path/to/local/folder/{e}"), + ("file:///path/to/local/folder", "file:///{drive}path/to/local/folder/{e}"), + ( + "file:path/to/local/folder?param=value", + "file://{cwd}/path/to/local/folder/{e}?param=value", + ), + ( + "file:///path/to/local/folder?param=value#fragment", + "file:///{drive}path/to/local/folder/{e}?param=value#fragment", + ), + ], +) +def test_create_experiment_appends_to_artifact_local_path_file_uri_correctly_on_windows( + input_uri, expected_uri +): + _assert_create_experiment_appends_to_artifact_uri_path_correctly(input_uri, expected_uri) + + +@pytest.mark.skipif(is_windows(), reason="This test fails on Windows") +@pytest.mark.parametrize( + ("input_uri", "expected_uri"), + [ + ("path/to/local/folder", "{cwd}/path/to/local/folder/{e}"), + ("/path/to/local/folder", "/path/to/local/folder/{e}"), + ("#path/to/local/folder?", "{cwd}/#path/to/local/folder?/{e}"), + ("file:path/to/local/folder", "file://{cwd}/path/to/local/folder/{e}"), + ("file:///path/to/local/folder", "file:///path/to/local/folder/{e}"), + ( + "file:path/to/local/folder?param=value", + "file://{cwd}/path/to/local/folder/{e}?param=value", + ), + ( + "file:///path/to/local/folder?param=value#fragment", + "file:///path/to/local/folder/{e}?param=value#fragment", + ), + ], +) +def test_create_experiment_appends_to_artifact_local_path_file_uri_correctly( + input_uri, expected_uri +): + _assert_create_experiment_appends_to_artifact_uri_path_correctly(input_uri, expected_uri) + + +@pytest.mark.parametrize( + ("input_uri", "expected_uri"), + [ + ("s3://bucket/path/to/root", "s3://bucket/path/to/root/{e}"), + ( + "s3://bucket/path/to/root?creds=mycreds", + "s3://bucket/path/to/root/{e}?creds=mycreds", + ), + ( + "dbscheme+driver://root@host/dbname?creds=mycreds#myfragment", + "dbscheme+driver://root@host/dbname/{e}?creds=mycreds#myfragment", + ), + ( + "dbscheme+driver://root:password@hostname.com?creds=mycreds#myfragment", + "dbscheme+driver://root:password@hostname.com/{e}?creds=mycreds#myfragment", + ), + ( + "dbscheme+driver://root:password@hostname.com/mydb?creds=mycreds#myfragment", + "dbscheme+driver://root:password@hostname.com/mydb/{e}?creds=mycreds#myfragment", + ), + ], +) +def test_create_experiment_appends_to_artifact_uri_path_correctly(input_uri, expected_uri): + _assert_create_experiment_appends_to_artifact_uri_path_correctly(input_uri, expected_uri) + + +def _assert_create_run_appends_to_artifact_uri_path_correctly( + artifact_root_uri, expected_artifact_uri_format +): + # Patch `is_local_uri` to prevent the SqlAlchemy store from attempting to create local + # filesystem directories for file URI and POSIX path test cases + with mock.patch("mlflow.store.tracking.sqlalchemy_store.is_local_uri", return_value=False): + with TempDir() as tmp: + dbfile_path = tmp.path("db") + store = SqlAlchemyStore( + db_uri="sqlite:///" + dbfile_path, default_artifact_root=artifact_root_uri + ) + exp_id = store.create_experiment(name="exp") + run = store.create_run( + experiment_id=exp_id, user_id="user", start_time=0, tags=[], run_name="name" + ) + cwd = Path.cwd().as_posix() + drive = Path.cwd().drive + if is_windows() and expected_artifact_uri_format.startswith("file:"): + cwd = f"/{cwd}" + drive = f"{drive}/" + assert run.info.artifact_uri == expected_artifact_uri_format.format( + e=exp_id, r=run.info.run_id, cwd=cwd, drive=drive + ) + + +@pytest.mark.skipif(not is_windows(), reason="This test only passes on Windows") +@pytest.mark.parametrize( + ("input_uri", "expected_uri"), + [ + ( + "file://my_server/my_path/my_sub_path", + "file://my_server/my_path/my_sub_path/{e}/{r}/artifacts", + ), + ("path/to/local/folder", "file://{cwd}/path/to/local/folder/{e}/{r}/artifacts"), + ("/path/to/local/folder", "file:///{drive}path/to/local/folder/{e}/{r}/artifacts"), + ("#path/to/local/folder?", "file://{cwd}/{e}/{r}/artifacts#path/to/local/folder?"), + ("file:path/to/local/folder", "file://{cwd}/path/to/local/folder/{e}/{r}/artifacts"), + ( + "file:///path/to/local/folder", + "file:///{drive}path/to/local/folder/{e}/{r}/artifacts", + ), + ( + "file:path/to/local/folder?param=value", + "file://{cwd}/path/to/local/folder/{e}/{r}/artifacts?param=value", + ), + ( + "file:///path/to/local/folder?param=value#fragment", + "file:///{drive}path/to/local/folder/{e}/{r}/artifacts?param=value#fragment", + ), + ], +) +def test_create_run_appends_to_artifact_local_path_file_uri_correctly_on_windows( + input_uri, expected_uri +): + _assert_create_run_appends_to_artifact_uri_path_correctly(input_uri, expected_uri) + + +@pytest.mark.skipif(is_windows(), reason="This test fails on Windows") +@pytest.mark.parametrize( + ("input_uri", "expected_uri"), + [ + ("path/to/local/folder", "{cwd}/path/to/local/folder/{e}/{r}/artifacts"), + ("/path/to/local/folder", "/path/to/local/folder/{e}/{r}/artifacts"), + ("#path/to/local/folder?", "{cwd}/#path/to/local/folder?/{e}/{r}/artifacts"), + ("file:path/to/local/folder", "file://{cwd}/path/to/local/folder/{e}/{r}/artifacts"), + ( + "file:///path/to/local/folder", + "file:///path/to/local/folder/{e}/{r}/artifacts", + ), + ( + "file:path/to/local/folder?param=value", + "file://{cwd}/path/to/local/folder/{e}/{r}/artifacts?param=value", + ), + ( + "file:///path/to/local/folder?param=value#fragment", + "file:///path/to/local/folder/{e}/{r}/artifacts?param=value#fragment", + ), + ], +) +def test_create_run_appends_to_artifact_local_path_file_uri_correctly(input_uri, expected_uri): + _assert_create_run_appends_to_artifact_uri_path_correctly(input_uri, expected_uri) + + +@pytest.mark.parametrize( + ("input_uri", "expected_uri"), + [ + ("s3://bucket/path/to/root", "s3://bucket/path/to/root/{e}/{r}/artifacts"), + ( + "s3://bucket/path/to/root?creds=mycreds", + "s3://bucket/path/to/root/{e}/{r}/artifacts?creds=mycreds", + ), + ( + "dbscheme+driver://root@host/dbname?creds=mycreds#myfragment", + "dbscheme+driver://root@host/dbname/{e}/{r}/artifacts?creds=mycreds#myfragment", + ), + ( + "dbscheme+driver://root:password@hostname.com?creds=mycreds#myfragment", + "dbscheme+driver://root:password@hostname.com/{e}/{r}/artifacts" + "?creds=mycreds#myfragment", + ), + ( + "dbscheme+driver://root:password@hostname.com/mydb?creds=mycreds#myfragment", + "dbscheme+driver://root:password@hostname.com/mydb/{e}/{r}/artifacts" + "?creds=mycreds#myfragment", + ), + ], +) +def test_create_run_appends_to_artifact_uri_path_correctly(input_uri, expected_uri): + _assert_create_run_appends_to_artifact_uri_path_correctly(input_uri, expected_uri)