-
Notifications
You must be signed in to change notification settings - Fork 0
/
item_24.py
executable file
·207 lines (144 loc) · 5.09 KB
/
item_24.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python3
'''Item 24 from Effective Python'''
# Example 1
''' you’re writing a MapReduce implementation and you want a common class to
represent the input data, define such a class with a read method that must be
defined by subclasses '''
class InputData(object):
def read(self):
raise NotImplementedError
# Example 2
''' a concrete subclass of InputData that reads data from a file on disk '''
class PathInputData(InputData):
def __init__(self, path):
super().__init__()
self.path = path
def read(self):
return open(self.path).read()
# Example 3
''' You'd want a similar abstract interface for the MapReduce worker that
consumes the input data in a standard way '''
class Worker(object):
def __init__(self, input_data):
self.input_data = input_data
self.result = None
def map(self):
raise NotImplementedError
def reduce(self, other):
raise NotImplementedError
# Example 4
''' define a concrete subclass of Worker to implement the specific MapReduce
function '''
class LineCountWorker(Worker):
def map(self):
data = self.input_data.read()
self.result = data.count('\n')
def reduce(self, other):
self.result += other.result
# Example 5
''' simplest approach is to manually build and connect the objects with some
helper functions '''
import os
def generate_inputs(data_dir):
for name in os.listdir(data_dir):
yield PathInputData(os.path.join(data_dir, name))
# Example 6
''' create the LineCountWorker instances using the InputData instances returned
by generate_inputs '''
def create_workers(input_list):
workers = []
for input_data in input_list:
workers.append(LineCountWorker(input_data))
return workers
# Example 7
''' execute these Worker instances by fanning out the map step to multiple
threads. Call reduce repeatedly to combine the results into one final value '''
from threading import Thread
def execute(workers):
threads = [Thread(target=w.map) for w in workers]
for thread in threads: thread.start()
for thread in threads: thread.join()
first, rest = workers[0], workers[1:]
for worker in rest:
first.reduce(worker)
return first.result
# Example 8
''' connect all of the pieces together in a function to run each step '''
def mapreduce(data_dir):
inputs = generate_inputs(data_dir)
workers = create_workers(inputs)
return execute(workers)
# Example 9
''' Running this function on a set of test input files works great '''
print('Example 9:\n==========')
from tempfile import TemporaryDirectory
import random
def write_test_files(tmpdir):
for i in range(100):
with open(os.path.join(tmpdir, str(i)), 'w') as f:
f.write('\n' * random.randint(0, 100))
with TemporaryDirectory() as tmpdir:
write_test_files(tmpdir)
result = mapreduce(tmpdir)
print('There are', result, 'lines')
# Example 10
''' extend the InputData class with a generic class method thats responsible
for creating new InputData instances using a common interface '''
class GenericInputData(object):
def read(self):
raise NotImplementedError
@classmethod
def generate_inputs(cls, config):
raise NotImplementedError
# Example 11
''' use the config to find the directory to list for input files '''
class PathInputData(GenericInputData):
def __init__(self, path):
super().__init__()
self.path = path
def read(self):
return open(self.path).read()
@classmethod
def generate_inputs(cls, config):
data_dir = config['data_dir']
for name in os.listdir(data_dir):
yield cls(os.path.join(data_dir, name))
# Example 12
''' construct instances of the GenericWorker concrete subclass using cls() as a
generic constructor '''
class GenericWorker(object):
def __init__(self, input_data):
self.input_data = input_data
self.result = None
def map(self):
raise NotImplementedError
def reduce(self, other):
raise NotImplementedError
@classmethod
def create_workers(cls, input_class, config):
workers = []
for input_data in input_class.generate_inputs(config):
workers.append(cls(input_data))
return workers
# Example 13
''' The effect on GenericWorker subclass is nothing more than changing its
parent class '''
class LineCountWorker(GenericWorker):
def map(self):
data = self.input_data.read()
self.result = data.count('\n')
def reduce(self, other):
self.result += other.result
# Example 14
''' rewrite the mapreduce function to be completely generic '''
def mapreduce(worker_class, input_class, config):
workers = worker_class.create_workers(input_class, config)
return execute(workers)
# Example 15
''' difference is that the mapreduce function requires more parameters so that it can operate generically '''
print('\nExample 15:\n==========')
with TemporaryDirectory() as tmpdir:
write_test_files(tmpdir)
config = {'data_dir': tmpdir}
result = mapreduce(LineCountWorker, PathInputData, config)
print('There are', result, 'lines')