-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathannMLPMultiOptimize.py
205 lines (166 loc) · 7.62 KB
/
annMLPMultiOptimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
===========================================================================
Multi Layer Perceptron - Multiclass Optimize
===========================================================================
Multi Layer Perceptron - Multiclass Optimize
"""
import os
from contextlib import contextmanager
import time
import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import talos as ta
from talos.model.normalizers import lr_normalizer
import tensorflow as tf
import keras.backend as K
from keras import models, layers
from keras.optimizers import RMSprop, SGD
from keras.activations import relu, softmax
from filehandler import Filehandler
from dataset import KDDCup1999
@contextmanager
def timer(title):
t0 = time.time()
yield
print('{} - done in {:.0f}s'.format(title, time.time() - t0))
class AnnMLPMultiOptimize:
def __init__(self):
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Ignore low level instruction warnings
tf.logging.set_verbosity(tf.logging.ERROR) # Set tensorflow verbosity
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print(__doc__)
self.random_state = 20
self.filehandler = Filehandler()
self.ds = KDDCup1999()
self.folder = 'tuning'
# Datasets
self.X = None
self.y = None
self.X_train = None
self.X_test = None
self.y_train = None
self.y_test = None
self.n_features = None
self.label_map_string_2_int = {'normal': 0, 'dos': 1, 'u2r': 2, 'r2l': 3, 'probe': 4}
with timer('\nPreparing dataset'):
self.load_data()
self.set_y()
self.remove_target_from_X()
self.n_features_all = self.X.shape[1]
self.n_features_50pct = int(self.n_features_all * 0.5)
self.n_features_80pct = int(self.n_features_all * 0.8)
self.y = pd.get_dummies(self.y)
self.X = self.X.values
self.y = self.y.values
with timer('\nSearching parameter space'):
# self.p = {'lr': (0.5, 5, 10),
# 'first_neuron': [self.n_features_70pct, self.n_features_all],
# 'hidden_layers': [0, 1, 2],
# 'hidden_neuron': [self.n_features_70pct, self.n_features_all],
# 'batch_size': [100, 200],
# 'epochs': [30],
# 'dropout': (0, 0.2, 0.5),
# 'weight_regulizer': [None],
# 'emb_output_dims': [None],
# 'shape': ['brick', 'long_funnel'],
# 'optimizer': [Adam, RMSprop],
# 'losses': [binary_crossentropy],
# 'activation': [relu],
# 'last_activation': [sigmoid]}
self.ptest = {'lr': [10],
'first_neuron': [self.n_features_all],
'hidden_layers': [1],
'hidden_neuron': [self.n_features_all],
'batch_size': [100],
'epochs': [5],
'dropout': [0.2],
'optimizer': [SGD],
'activation': [relu],
'last_activation': [softmax]}
self.p1 = {'lr': (0.5, 5, 10),
'first_neuron': [self.n_features_50pct, self.n_features_80pct, self.n_features_all],
'hidden_layers': [1, 2, 3],
'hidden_neuron': [self.n_features_50pct, self.n_features_80pct, self.n_features_all],
'batch_size': [100, 500, 1000],
'epochs': [20],
'dropout': (0, 0.2, 5),
'optimizer': [SGD, RMSprop],
'activation': [relu],
'last_activation': [softmax]}
dataset_name = self.folder + '/Hyperparameter tuning - ' + self.__class__.__name__
scan = ta.Scan(x=self.X,
y=self.y,
model=self.get_model,
params=self.p1,
grid_downsample=0.01,
dataset_name=dataset_name,
experiment_no='1')
with timer('\nEvaluating Scan'):
r = ta.Reporting(scan)
# get the number of rounds in the Scan
print('\nNumber of rounds in scan ', r.rounds())
# get highest results
print('\nHighest validation accuracy', r.high('val_dr'))
print('\nHighest validation detection rate', r.high('val_dr'))
print('\nHighest validation false alarm rate', r.high('val_far'))
# get the highest result for any metric
print(r.high('val_dr'))
# get the round with the best result
print('Best round', r.rounds2high())
# get the best paramaters
print(r.best_params())
#r.plot_corr()
#plt.show()
# a four dimensional bar grid
#r.plot_bars('batch_size', 'val_dr', 'hidden_layers', 'lr')
#plt.show()
print('Finished')
@staticmethod
def dr(y_true, y_pred):
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = K.round(K.clip(y_true, 0, 1))
tp = K.sum(y_pos * y_pred_pos)
fn = K.sum(y_pos * y_pred_neg)
return tp / (tp + fn + K.epsilon())
@staticmethod
def far(y_true, y_pred):
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = K.round(K.clip(y_true, 0, 1))
y_neg = 1 - y_pos
tn = K.sum(y_neg * y_pred_neg)
fp = K.sum(y_neg * y_pred_pos)
return fp / (tn + fp + K.epsilon())
def get_model(self, x_train, y_train, x_val, y_val, params):
model = models.Sequential()
# Input layer with dropout
model.add(layers.Dense(params['first_neuron'], activation=params['activation'],
input_shape=(self.n_features_all,)))
model.add(layers.Dropout(params['dropout']))
# Hidden layers with dropout
for i in range(params['hidden_layers']):
model.add(layers.Dense(params['hidden_neuron'], activation=params['activation']))
model.add(layers.Dropout(params['dropout']))
# Output layer
model.add(layers.Dense(5, activation=params['last_activation']))
# Build model
model.compile(params['optimizer'](lr=lr_normalizer(params['lr'], params['optimizer'])),
loss='categorical_crossentropy', metrics=['accuracy', self.dr, self.far])
history = model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=params['batch_size'],
epochs=params['epochs'], verbose=0)
return history, model
def load_data(self):
self.X = self.filehandler.read_csv(self.ds.config['path'], self.ds.config['file'] + '_Tensor2d_type_1')
print('\tRow count:\t', '{}'.format(self.X.shape[0]))
print('\tColumn count:\t', '{}'.format(self.X.shape[1]))
def set_y(self):
self.y = self.X['attack_category']
self.y = self.y.map(self.label_map_string_2_int)
def remove_target_from_X(self):
self.X.drop('attack_category', axis=1, inplace=True)
def train_test_split(self):
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.X, self.y, test_size=0.30,
random_state=self.random_state)
annmlpmulti = AnnMLPMultiOptimize()