Skip to content

Latest commit

 

History

History
160 lines (95 loc) · 9.72 KB

getting_started_make_guide.md

File metadata and controls

160 lines (95 loc) · 9.72 KB

More Detailed make Instructions

The full syntax of the make command is <keyboard_folder>:<keymap>:<target>, where:

  • <keyboard_folder> is the path of the keyboard, for example planck
    • Use all to compile all keyboards
    • Specify the path to compile a revision, for example planck/rev4 or planck/rev3
    • If the keyboard doesn't have any folders, it can be left out
    • To compile the default folder, you can leave it out
  • <keymap> is the name of the keymap, for example algernon
    • Use all to compile all keymaps
  • <target> will be explained in more detail below.

The <target> means the following

  • If no target is given, then it's the same as all below
  • all compiles as many keyboard/revision/keymap combinations as specified. For example, make planck/rev4:default will generate a single .hex, while make planck/rev4:all will generate a hex for every keymap available to the planck.
  • flash, dfu, teensy, avrdude, dfu-util, or bootloadHID compile and upload the firmware to the keyboard. If the compilation fails, then nothing will be uploaded. The programmer to use depends on the keyboard. For most keyboards it's dfu, but for ChibiOS keyboards you should use dfu-util, and teensy for standard Teensys. To find out which command you should use for your keyboard, check the keyboard specific readme. Visit the Flashing Firmware guide for more details of the available bootloaders.
    • Note: some operating systems need privileged access for these commands to work. This means that you may need to setup udev rules to access these without root access, or to run the command with root access (sudo make planck/rev4:default:flash).
  • clean, cleans the build output folders to make sure that everything is built from scratch. Run this before normal compilation if you have some unexplainable problems.
  • distclean removes .hex files and .bin files.

The following targets are for developers:

  • show-path shows the path of the source and object files.
  • dump-vars dumps the makefile variable.
  • objs-size displays the size of individual object files.
  • show_build_options shows the options set in 'rules.mk'.
  • check-md5 displays the md5 checksum of the generated binary file.

You can also add extra options at the end of the make command line, after the target

  • make COLOR=false - turns off color output
  • make SILENT=true - turns off output besides errors/warnings
  • make VERBOSE=true - outputs all of the gcc stuff (not interesting, unless you need to debug)
  • make VERBOSE_LD_CMD=yes - execute the ld command with the -v option.
  • make VERBOSE_AS_CMD=yes - execute the as command with the -v option.
  • make VERBOSE_C_CMD=<c_source_file> - add the -v option when compiling the specified C source file.
  • make DUMP_C_MACROS=<c_source_file> - dump preprocessor macros when compiling the specified C source file.
  • make DUMP_C_MACROS=<c_source_file> > <logfile> - dump preprocessor macros to <logfile> when compiling the specified C source file.
  • make VERBOSE_C_INCLUDE=<c_source_file> - dumps the file names to be included when compiling the specified C source file.
  • make VERBOSE_C_INCLUDE=<c_source_file> 2> <logfile> - dumps the file names to be included to <logfile> when compiling the specified C source file.

The make command itself also has some additional options, type make --help for more information. The most useful is probably -jx, which specifies that you want to compile using more than one CPU, the x represents the number of CPUs that you want to use. Setting that can greatly reduce the compile times, especially if you are compiling many keyboards/keymaps. I usually set it to one less than the number of CPUs that I have, so that I have some left for doing other things while it's compiling. Note that not all operating systems and make versions supports that option.

Here are some examples commands

  • make all:all builds everything (all keyboard folders, all keymaps). Running just make from the root will also run this.
  • make ergodox_infinity:algernon:clean will clean the build output of the Ergodox Infinity keyboard.
  • make planck/rev4:default:flash COLOR=false builds and uploads the keymap without color output.

rules.mk Options

Set these variables to no to disable them, and yes to enable them.

BOOTMAGIC_ENABLE

This allows you to hold a key and the salt key (space by default) and have access to a various EEPROM settings that persist over power loss. It's advised you keep this disabled, as the settings are often changed by accident, and produce confusing results that makes it difficult to debug. It's one of the more common problems encountered in help sessions.

MOUSEKEY_ENABLE

This gives you control over cursor movements and clicks via keycodes/custom functions.

EXTRAKEY_ENABLE

This allows you to use the system and audio control key codes.

CONSOLE_ENABLE

This allows you to print messages that can be read using hid_listen.

By default, all debug (dprint) print (print, xprintf), and user print (uprint) messages will be enabled. This will eat up a significant portion of the flash and may make the keyboard .hex file too big to program.

To disable debug messages (dprint) and reduce the .hex file size, include #define NO_DEBUG in your config.h file.

To disable print messages (print, xprintf) and user print messages (uprint) and reduce the .hex file size, include #define NO_PRINT in your config.h file.

To disable print messages (print, xprintf) and KEEP user print messages (uprint), include #define USER_PRINT in your config.h file (do not also include #define NO_PRINT in this case).

To see the text, open hid_listen and enjoy looking at your printed messages.

NOTE: Do not include uprint messages in anything other than your keymap code. It must not be used within the QMK system framework. Otherwise, you will bloat other people's .hex files.

COMMAND_ENABLE

This enables magic commands, typically fired with the default magic key combo LSHIFT+RSHIFT+KEY. Magic commands include turning on debugging messages (MAGIC+D) or temporarily toggling NKRO (MAGIC+N).

SLEEP_LED_ENABLE

Enables your LED to breath while your computer is sleeping. Timer1 is being used here. This feature is largely unused and untested, and needs updating/abstracting.

NKRO_ENABLE

This allows the keyboard to tell the host OS that up to 248 keys are held down at once (default without NKRO is 6). NKRO is off by default, even if NKRO_ENABLE is set. NKRO can be forced by adding #define FORCE_NKRO to your config.h or by binding MAGIC_TOGGLE_NKRO to a key and then hitting the key.

BACKLIGHT_ENABLE

This enables the in-switch LED backlighting. You can specify the backlight pin by putting this in your config.h:

#define BACKLIGHT_PIN B7

MIDI_ENABLE

This enables MIDI sending and receiving with your keyboard. To enter MIDI send mode, you can use the keycode MI_ON, and MI_OFF to turn it off. This is a largely untested feature, but more information can be found in the quantum/quantum.c file.

UNICODE_ENABLE

This allows you to send Unicode characters using UC(<code point>) in your keymap. Code points up to 0x7FFF are supported. This covers characters for most modern languages, as well as symbols, but it doesn't cover emoji.

UNICODEMAP_ENABLE

This allows you to send Unicode characters using X(<map index>) in your keymap. You will need to maintain a mapping table in your keymap file. All possible code points (up to 0x10FFFF) are supported.

UCIS_ENABLE

This allows you to send Unicode characters by inputting a mnemonic corresponding to the character you want to send. You will need to maintain a mapping table in your keymap file. All possible code points (up to 0x10FFFF) are supported.

For further details, as well as limitations, see the Unicode page.

AUDIO_ENABLE

This allows you output audio on the C6 pin (needs abstracting). See the audio page for more information.

FAUXCLICKY_ENABLE

Uses buzzer to emulate clicky switches. A cheap imitation of the Cherry blue switches. By default, uses the C6 pin, same as AUDIO_ENABLE.

VARIABLE_TRACE

Use this to debug changes to variable values, see the tracing variables section of the Unit Testing page for more information.

API_SYSEX_ENABLE

This enables using the Quantum SYSEX API to send strings (somewhere?)

KEY_LOCK_ENABLE

This enables key lock.

SPLIT_KEYBOARD

This enables split keyboard support (dual MCU like the let's split and bakingpy's boards) and includes all necessary files located at quantum/split_common

SPLIT_TRANSPORT

As there is no standard split communication driver for ARM-based split keyboards yet, SPLIT_TRANSPORT = custom must be used for these. It will prevent the standard split keyboard communication code (which is AVR-specific) from being included, allowing a custom implementation to be used.

CUSTOM_MATRIX

Lets you replace the default matrix scanning routine with your own code. For further details, see the Custom Matrix page.

DEBOUNCE_TYPE

Lets you replace the default key debouncing routine with an alternative one. If custom you will need to provide your own implementation.

Customizing Makefile Options on a Per-Keymap Basis

If your keymap directory has a file called rules.mk any options you set in that file will take precedence over other rules.mk options for your particular keyboard.

So let's say your keyboard's rules.mk has BACKLIGHT_ENABLE = yes. You want your particular keyboard to not have the backlight, so you make a file called rules.mk and specify BACKLIGHT_ENABLE = no.