-
Notifications
You must be signed in to change notification settings - Fork 310
/
Copy pathpyfm_fast.pyx
551 lines (473 loc) · 19.2 KB
/
pyfm_fast.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# encoding: utf-8
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
#
# Author: Corey Lynch <[email protected]>
#
# License: BSD Style.
import numpy as np
import sys
from time import time
from libc.math cimport exp, log, pow
cimport numpy as np
cimport cython
np.import_array()
ctypedef np.float64_t DOUBLE
ctypedef np.int32_t INTEGER
# MODEL CONSTANTS
DEF REGRESSION = 0
DEF CLASSIFICATION = 1
DEF OPTIMAL = 0
DEF INVERSE_SCALING = 1
cdef class FM_fast(object):
"""Factorization Machine fitted by minimizing a regularized empirical loss with adaptive SGD.
Parameters
----------
w : np.ndarray[DOUBLE, ndim=1, mode='c']
v : ndarray[DOUBLE, ndim=2, mode='c']
num_factors : int
num_attributes : int
n_iter : int
k0 : int
k1 : int
w0 : double
t : double
t0 : double
l : double
power_t : double
min_target : double
max_target : double
eta0 : double
learning_rate_schedule : int
shuffle_training : int
task : int
seed : int
verbose : int
"""
cdef public double w0
cdef public np.ndarray w
cdef public np.ndarray v
cdef public int num_factors
cdef public int num_attributes
cdef public int n_iter
cdef public int k0
cdef public int k1
cdef public DOUBLE t
cdef public DOUBLE t0
cdef public DOUBLE l
cdef public DOUBLE power_t
cdef public DOUBLE min_target
cdef public DOUBLE max_target
cdef public np.ndarray sum
cdef public np.ndarray sum_sqr
cdef public int task
cdef public int learning_rate_schedule
cdef public double learning_rate
cdef public int shuffle_training
cdef public int seed
cdef public int verbose
cdef public DOUBLE reg_0
cdef public DOUBLE reg_w
cdef public np.ndarray reg_v
cdef public np.ndarray grad_w
cdef public np.ndarray grad_v
cdef public DOUBLE sumloss
cdef public int count
def __init__(self,
np.ndarray[DOUBLE, ndim=1, mode='c'] w,
np.ndarray[DOUBLE, ndim=2, mode='c'] v,
int num_factors,
int num_attributes,
int n_iter,
int k0,
int k1,
double w0,
double t,
double t0,
double power_t,
double min_target,
double max_target,
double eta0,
int learning_rate_schedule,
int shuffle_training,
int task,
int seed,
int verbose):
self.w0 = w0
self.w = w
self.v = v
self.num_factors = num_factors
self.num_attributes = num_attributes
self.n_iter = n_iter
self.k0 = k0
self.k1 = k1
self.t = 1
self.t0 = t0
self.learning_rate = eta0
self.power_t = power_t
self.min_target = min_target
self.max_target = max_target
self.sum = np.zeros(self.num_factors)
self.sum_sqr = np.zeros(self.num_factors)
self.task = task
self.learning_rate_schedule = learning_rate_schedule
self.shuffle_training = shuffle_training
self.seed = seed
self.verbose = verbose
self.reg_0 = 0.0
self.reg_w = 0.0
self.reg_v = np.zeros(self.num_factors)
self.sumloss = 0.0
self.count = 0
self.grad_w = np.zeros(self.num_attributes)
self.grad_v = np.zeros((self.num_factors, self.num_attributes))
cdef _predict_instance(self, DOUBLE * x_data_ptr,
INTEGER * x_ind_ptr,
int xnnz):
# Helper variables
cdef DOUBLE result = 0.0
cdef int feature
cdef unsigned int i = 0
cdef unsigned int f = 0
cdef DOUBLE d
# map instance variables to local variables
cdef DOUBLE w0 = self.w0
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] w = self.w
cdef np.ndarray[DOUBLE, ndim=2, mode='c'] v = self.v
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] sum_ = np.zeros(self.num_factors)
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] sum_sqr_ = np.zeros(self.num_factors)
if self.k0 > 0:
result += w0
if self.k1 > 0:
for i in range(xnnz):
feature = x_ind_ptr[i]
result += w[feature] * x_data_ptr[i]
for f in range(self.num_factors):
sum_[f] = 0.0
sum_sqr_[f] = 0.0
for i in range(xnnz):
feature = x_ind_ptr[i]
d = v[f, feature] * x_data_ptr[i]
sum_[f] += d
sum_sqr_[f] += d*d
result += 0.5 * (sum_[f] * sum_[f] - sum_sqr_[f])
# pass sum to sgd_theta
self.sum = sum_
return result
cdef _predict_scaled(self, DOUBLE * x_data_ptr,
INTEGER * x_ind_ptr,
int xnnz):
cdef DOUBLE result = 0.0
cdef unsigned int i = 0
cdef unsigned int f = 0
cdef DOUBLE d
cdef DOUBLE w_dash = 0.0
cdef DOUBLE v_dash = 0.0
# map instance variables to local variables
cdef DOUBLE w0 = self.w0
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] w = self.w
cdef np.ndarray[DOUBLE, ndim=2, mode='c'] v = self.v
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] grad_w = self.grad_w
cdef np.ndarray[DOUBLE, ndim=2, mode='c'] grad_v = self.grad_v
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] sum_ = np.zeros(self.num_factors)
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] sum_sqr_ = np.zeros(self.num_factors)
cdef DOUBLE learning_rate = self.learning_rate
cdef DOUBLE reg_w = self.reg_w
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] reg_v = self.reg_v
if self.k0 > 0:
result += w0
if self.k1 > 0:
for i in xrange(xnnz):
feature = x_ind_ptr[i]
assert(feature < self.num_attributes)
w_dash = w[feature] - learning_rate * (grad_w[feature] + 2 * reg_w * w[feature])
result += w_dash * x_data_ptr[i]
for f in xrange(self.num_factors):
sum_[f] = 0.0
sum_sqr_[f] = 0.0
for i in xrange(xnnz):
feature = x_ind_ptr[i]
v_dash = v[f,feature] - learning_rate * (grad_v[f,feature] + 2 * reg_v[f] * v[f,feature])
d = v_dash * x_data_ptr[i]
sum_[f] += d
sum_sqr_[f] += d*d
result += 0.5 * (sum_[f]*sum_[f] - sum_sqr_[f])
return result
def _predict(self, CSRDataset dataset):
# Helper access variables
cdef unsigned int i = 0
cdef Py_ssize_t n_samples = dataset.n_samples
cdef DOUBLE * x_data_ptr = NULL
cdef INTEGER * x_ind_ptr = NULL
cdef int xnnz
cdef DOUBLE sample_weight = 1.0
cdef DOUBLE y_placeholder
cdef DOUBLE p = 0.0
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] return_preds = np.zeros(n_samples)
for i in range(n_samples):
dataset.next(& x_data_ptr, & x_ind_ptr, & xnnz, & y_placeholder,
& sample_weight)
p = self._predict_instance(x_data_ptr, x_ind_ptr, xnnz)
if self.task == REGRESSION:
p = min(self.max_target, p)
p = max(self.min_target, p)
else:
p = (1.0 / (1.0 + exp(-p)))
return_preds[i] = p
return return_preds
cdef _sgd_theta_step(self, DOUBLE * x_data_ptr,
INTEGER * x_ind_ptr,
int xnnz,
DOUBLE y):
cdef DOUBLE mult = 0.0
cdef DOUBLE p
cdef int feature
cdef unsigned int i = 0
cdef unsigned int f = 0
cdef DOUBLE d
cdef DOUBLE grad_0
cdef DOUBLE w0 = self.w0
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] w = self.w
cdef np.ndarray[DOUBLE, ndim=2, mode='c'] v = self.v
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] grad_w = self.grad_w
cdef np.ndarray[DOUBLE, ndim=2, mode='c'] grad_v = self.grad_v
cdef DOUBLE learning_rate = self.learning_rate
cdef DOUBLE reg_0 = self.reg_0
cdef DOUBLE reg_w = self.reg_w
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] reg_v = self.reg_v
p = self._predict_instance(x_data_ptr, x_ind_ptr, xnnz)
if self.task == REGRESSION:
p = min(self.max_target, p)
p = max(self.min_target, p)
mult = 2 * (p - y);
else:
mult = y * ( (1.0 / (1.0+exp(-y*p))) - 1.0)
# Set learning schedule
if self.learning_rate_schedule == OPTIMAL:
self.learning_rate = 1.0 / (self.t + self.t0)
elif self.learning_rate_schedule == INVERSE_SCALING:
self.learning_rate = self.learning_rate / pow(self.t, self.power_t)
if self.verbose > 0:
self.sumloss += _squared_loss(p,y) if self.task == REGRESSION else _log_loss(p,y)
# Update global bias
if self.k0 > 0:
grad_0 = mult
w0 -= learning_rate * (grad_0 + 2 * reg_0 * w0)
# Update feature biases
if self.k1 > 0:
for i in range(xnnz):
feature = x_ind_ptr[i]
grad_w[feature] = mult * x_data_ptr[i]
w[feature] -= learning_rate * (grad_w[feature]
+ 2 * reg_w * w[feature])
# Update feature factor vectors
for f in range(self.num_factors):
for i in range(xnnz):
feature = x_ind_ptr[i]
grad_v[f,feature] = mult * (x_data_ptr[i] * (self.sum[f] - v[f,feature] * x_data_ptr[i]))
v[f,feature] -= learning_rate * (grad_v[f,feature] + 2 * reg_v[f] * v[f,feature])
# Pass updated vars to other functions
self.learning_rate = learning_rate
self.w0 = w0
self.w = w
self.v = v
self.grad_w = grad_w
self.grad_v = grad_v
self.t += 1
self.count += 1
cdef _sgd_lambda_step(self, DOUBLE * validation_x_data_ptr,
INTEGER * validation_x_ind_ptr,
int validation_xnnz,
DOUBLE validation_y):
cdef DOUBLE sum_f
cdef DOUBLE sum_f_dash
cdef DOUBLE sum_f_dash_f
cdef DOUBLE p
cdef DOUBLE grad_loss
cdef int feature
cdef unsigned int i
cdef unsigned int f
cdef DOUBLE lambda_w_grad = 0.0
cdef DOUBLE lambda_v_grad = 0.0
cdef DOUBLE v_dash = 0.0
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] w = self.w
cdef np.ndarray[DOUBLE, ndim=2, mode='c'] v = self.v
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] grad_w = self.grad_w
cdef np.ndarray[DOUBLE, ndim=2, mode='c'] grad_v = self.grad_v
cdef DOUBLE learning_rate = self.learning_rate
cdef DOUBLE reg_0 = self.reg_0
cdef DOUBLE reg_w = self.reg_w
cdef np.ndarray[DOUBLE, ndim=1, mode='c'] reg_v = self.reg_v
p = self._predict_scaled(validation_x_data_ptr, validation_x_ind_ptr, validation_xnnz)
if self.task == REGRESSION:
p = min(self.max_target, p)
p = max(self.min_target, p)
grad_loss = 2 * (p - validation_y)
else:
grad_loss = validation_y * ( (1.0 / (1.0 + exp(-validation_y*p))) - 1.0)
if self.k1 > 0:
lambda_w_grad = 0.0
for i in xrange(validation_xnnz):
feature = validation_x_ind_ptr[i]
lambda_w_grad += validation_x_data_ptr[i] * w[feature]
lambda_w_grad = -2 * learning_rate * lambda_w_grad
reg_w -= learning_rate * grad_loss * lambda_w_grad
reg_w = max(0.0, reg_w)
for f in xrange(self.num_factors):
sum_f = 0.0
sum_f_dash = 0.0
sum_f_dash_f = 0.0
for i in xrange(validation_xnnz):
feature = validation_x_ind_ptr[i]
v_dash = v[f,feature] - learning_rate * (grad_v[f,feature] + 2 * reg_v[f] * v[f,feature])
sum_f_dash += v_dash * validation_x_data_ptr[i]
sum_f += v[f,feature] * validation_x_data_ptr[i]
sum_f_dash_f += v_dash * validation_x_data_ptr[i] * v[f,feature] * validation_x_data_ptr[i]
lambda_v_grad = -2 * learning_rate * (sum_f_dash * sum_f - sum_f_dash_f)
reg_v[f] -= learning_rate * grad_loss * lambda_v_grad
reg_v[f] = max(0.0, reg_v[f])
# Pass updated vars to other functions
self.reg_w = reg_w
self.reg_v = reg_v
def fit(self, CSRDataset dataset, CSRDataset validation_dataset):
# get the data information into easy vars
cdef Py_ssize_t n_samples = dataset.n_samples
cdef Py_ssize_t n_validation_samples = validation_dataset.n_samples
cdef DOUBLE * x_data_ptr = NULL
cdef INTEGER * x_ind_ptr = NULL
cdef DOUBLE * validation_x_data_ptr = NULL
cdef INTEGER * validation_x_ind_ptr = NULL
# helper variables
cdef int xnnz
cdef DOUBLE y = 0.0
cdef DOUBLE validation_y = 0.0
cdef int validation_xnnz
cdef unsigned int count = 0
cdef unsigned int epoch = 0
cdef unsigned int i = 0
cdef DOUBLE sample_weight = 1.0
cdef DOUBLE validation_sample_weight = 1.0
for epoch in range(self.n_iter):
if self.verbose > 0:
print("-- Epoch %d" % (epoch + 1))
self.count = 0
self.sumloss = 0
if self.shuffle_training:
dataset.shuffle(self.seed)
for i in range(n_samples):
dataset.next( & x_data_ptr, & x_ind_ptr, & xnnz, & y,
& sample_weight)
self._sgd_theta_step(x_data_ptr, x_ind_ptr, xnnz, y)
if epoch > 0:
validation_dataset.next( & validation_x_data_ptr, & validation_x_ind_ptr,
& validation_xnnz, & validation_y,
& validation_sample_weight)
self._sgd_lambda_step(validation_x_data_ptr, validation_x_ind_ptr,
validation_xnnz, validation_y)
if self.verbose > 0:
error_type = "MSE" if self.task == REGRESSION else "log loss"
print "Training %s: %.5f" % (error_type, (self.sumloss / self.count))
def __getstate__(self):
# Implements Pickle interface.
field_names = ["w0", "w", "v", "num_factors", "num_attributes",
"n_iter", "k0", "k1", "t", "t0", "l", "power_t",
"min_target", "max_target", "sum", "sum_sqr", "task",
"learning_rate_schedule", "learning_rate",
"shuffle_training", "seed", "verbose", "reg_0",
"reg_w", "reg_v", "grad_w", "grad_v", "sumloss",
"count"]
state = [field_names]
for field in field_names:
val = getattr(self ,field)
state.append(val)
return tuple(state)
def __setstate__(self, state):
# Implements Pickle interface.
for n, field in enumerate(state[0]):
setattr(self, field, state[n + 1])
cdef inline double max(double a, double b):
return a if a >= b else b
cdef inline double min(double a, double b):
return a if a <= b else b
cdef _log_loss(DOUBLE p, DOUBLE y):
cdef DOUBLE z
z = p * y
# approximately equal and saves the computation of the log
if z > 18:
return exp(-z)
if z < -18:
return -z
return log(1.0 + exp(-z))
cdef _squared_loss(DOUBLE p, DOUBLE y):
return 0.5 * (p - y) * (p - y)
cdef class CSRDataset:
"""An sklearn ``SequentialDataset`` backed by a scipy sparse CSR matrix. This is an ugly hack for the moment until I find the best way to link to sklearn. """
cdef Py_ssize_t n_samples
cdef int current_index
cdef int stride
cdef DOUBLE *X_data_ptr
cdef INTEGER *X_indptr_ptr
cdef INTEGER *X_indices_ptr
cdef DOUBLE *Y_data_ptr
cdef np.ndarray feature_indices
cdef INTEGER *feature_indices_ptr
cdef np.ndarray index
cdef INTEGER *index_data_ptr
cdef DOUBLE *sample_weight_data
def __cinit__(self, np.ndarray[DOUBLE, ndim=1, mode='c'] X_data,
np.ndarray[INTEGER, ndim=1, mode='c'] X_indptr,
np.ndarray[INTEGER, ndim=1, mode='c'] X_indices,
np.ndarray[DOUBLE, ndim=1, mode='c'] Y,
np.ndarray[DOUBLE, ndim=1, mode='c'] sample_weight):
"""Dataset backed by a scipy sparse CSR matrix.
The feature indices of ``x`` are given by x_ind_ptr[0:nnz].
The corresponding feature values are given by
x_data_ptr[0:nnz].
Parameters
----------
X_data : ndarray, dtype=np.float64, ndim=1, mode='c'
The data array of the CSR matrix; a one-dimensional c-continuous
numpy array of dtype np.float64.
X_indptr : ndarray, dtype=np.int32, ndim=1, mode='c'
The index pointer array of the CSR matrix; a one-dimensional
c-continuous numpy array of dtype np.int32.
X_indices : ndarray, dtype=np.int32, ndim=1, mode='c'
The column indices array of the CSR matrix; a one-dimensional
c-continuous numpy array of dtype np.int32.
Y : ndarray, dtype=np.float64, ndim=1, mode='c'
The target values; a one-dimensional c-continuous numpy array of
dtype np.float64.
sample_weights : ndarray, dtype=np.float64, ndim=1, mode='c'
The weight of each sample; a one-dimensional c-continuous numpy
array of dtype np.float64.
"""
self.n_samples = Y.shape[0]
self.current_index = -1
self.X_data_ptr = <DOUBLE *>X_data.data
self.X_indptr_ptr = <INTEGER *>X_indptr.data
self.X_indices_ptr = <INTEGER *>X_indices.data
self.Y_data_ptr = <DOUBLE *>Y.data
self.sample_weight_data = <DOUBLE *> sample_weight.data
# Use index array for fast shuffling
cdef np.ndarray[INTEGER, ndim=1,
mode='c'] index = np.arange(0, self.n_samples,
dtype=np.int32)
self.index = index
self.index_data_ptr = <INTEGER *> index.data
cdef void next(self, DOUBLE **x_data_ptr, INTEGER **x_ind_ptr,
int *nnz, DOUBLE *y, DOUBLE *sample_weight):
cdef int current_index = self.current_index
if current_index >= (self.n_samples - 1):
current_index = -1
current_index += 1
cdef int sample_idx = self.index_data_ptr[current_index]
cdef int offset = self.X_indptr_ptr[sample_idx]
y[0] = self.Y_data_ptr[sample_idx]
x_data_ptr[0] = self.X_data_ptr + offset
x_ind_ptr[0] = self.X_indices_ptr + offset
nnz[0] = self.X_indptr_ptr[sample_idx + 1] - offset
sample_weight[0] = self.sample_weight_data[sample_idx]
self.current_index = current_index
cdef void shuffle(self, seed):
np.random.RandomState(seed).shuffle(self.index)