-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
331 lines (296 loc) · 12.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import torch
import math
import numpy as np
import pandas as pd
import torch.nn as nn
import matplotlib
matplotlib.use("agg")
from matplotlib import pyplot as plt
from torchvision import transforms as transforms
from PIL import Image
rad2deg = 180/math.pi
deg2rad = math.pi/180
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
eps=1e-14
def round_(tensor, digits=2):
rounded=(tensor*10**digits).round()/(10**digits)
return rounded
def eval_metrics(pred, targets, num_peds, mask, eps=1e-14, reduction='mean'):
num_peds = num_peds.sum()
dist=torch.sqrt(((pred-targets)**2).sum(dim=-1)+eps)
dist = dist*mask
dist_final = dist[:,:,-1]
fde = dist_final.sum()
ade = dist.sum()
if reduction=='mean':
ade = ade.div(num_peds*pred.size(2))
fde = fde.div(num_peds)
return ade , fde
def fde(pred, targets, num_peds, eps=1e-14):
num_peds = num_peds.sum()
dist = torch.sqrt(((pred[...,-1,:]-targets[...,-1,:])**2).sum(dim=-1)+eps)
fde = dist.sum()/(num_peds)
return fde
def get_batch(batch):
"""
Function to move tensors to gpu if available else cpu
and add batch dimension if it doesn't exist
"""
batch = [t.to(device) for t in batch]
if not len(batch[0].size())==4: batch = [t.unsqueeze(0) for t in batch]
return batch
def preprocess_image(fname):
"""
Function to preprocess scene
"""
img = Image.open(fname)
img_size=(224, 224)
preprocess=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(img_size),
transforms.functional.to_grayscale,
transforms.ToTensor()])
#transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
#])
img = preprocess(img)
return img
def evaluate_model(model, testloader):
"""
Function to evaluate trained model 'model' given 'testloader'
"""
test_ade=float(0)
test_fde=float(0)
model.eval()
total_pedestrians=float(0)
for b, batch in enumerate(testloader):
pred, target,sequence, pedestrians, op_mask, _ = predict(batch,model)
# ---------- INFERENCE ---------------------------
# pred: is the variable corresponding to model prediction with size (batch_size, num_pedestrians, prediction_length, 2)
# at inference, batch size is typically 1, the variable corresponds to (x, y) predictions over `prediction_length'
# timestamps for 'num_pedestrians' pedestrians.
# --------------------------------------------------
total_pedestrians+=pedestrians.sum()
ade_b, fde_b = eval_metrics(pred, target, pedestrians, op_mask, eps=0, reduction='sum')
test_ade+=ade_b.item()
test_fde+=fde_b.item()
test_ade/=(total_pedestrians*pred.size(2))
test_fde/=(total_pedestrians)
return test_ade, test_fde
def predict(batch, net, domain=None):
"""
Function to predict joint future trajectories for all samples in the batch
using model 'net'
"""
batch = get_batch(batch)
sequence,target,dist_matrix,bearing_matrix,heading_matrix,\
ip_mask,op_mask,pedestrians, mean, var = batch
target_mask = op_mask.unsqueeze(-1).expand(target.size())
pred = net(sequence, pedestrians, dist_matrix,bearing_matrix,heading_matrix,ip_mask,op_mask, scene=None, mean=mean, var=var, domain=domain)
pred = revert_orig_tensor(pred, mean, var, op_mask, dim=1)
target = revert_orig_tensor(target, mean, var, op_mask, dim=1)
sequence = revert_orig_tensor(sequence, mean, var, ip_mask, dim=1)
return pred, target, sequence, pedestrians, op_mask, ip_mask
def normalize_tensor(tensor, mean, var, mask, dim=0):
"""
Normalizes tensor to 0,1
"""
var_ = var.unsqueeze(dim).expand_as(tensor)
tensor=tensor/var_
mask_ = mask.unsqueeze(-1).expand_as(tensor)
tensor = tensor*mask_
return tensor
def revert_orig_tensor(tensor, mean, var, mask, dim=0):
"""
Reverts normalized tensor to original value
"""
mean_ = mean.unsqueeze(dim).expand_as(tensor)
var_ = var.unsqueeze(dim).expand_as(tensor)
tensor=tensor*var_
mask_ = mask.unsqueeze(-1).expand_as(tensor)
tensor = tensor*mask_
return tensor
def get_distance_matrix(sample, neighbors_dim=0, mask=None, eps=1e-14):
"""
sample -> batch_size x num_pedestrians x 2 OR sequence_length x num_pedestrians x 2
neighbors_dim -> dimension in sample pertaining to num_pedestrians
computes distance matrix -> batch_size x num_pedestrians x num_pedestrians OR sequence_length x num_pedestrians x num_pedestrians
"""
s, n = sample.size()[:2]
norms=torch.sum((sample)**2,dim=-1,keepdim=True)
norms=norms.expand(s, n, n)+norms.expand(s, n, n).transpose(1,2)
ab_term = torch.bmm(sample,sample.transpose(1,2))
dsquared=norms-2*ab_term.view(s,n,n)
distance = torch.sqrt(torch.abs(dsquared)+eps)
return distance
def mask_matrix(matrix, mask, n_dims):
"""
mask matrix given mask
"""
mask = mask.unsqueeze(-1).expand_as(matrix)
mask = mask.mul(mask.transpose(*n_dims))
matrix = matrix*mask
return matrix
def get_features(sample, neighbors_dim, previous_sequence=None, mean=None, var=None, mask=None, eps=1e-14):
"""
Returns distance matrix, relative bearing matrix, relative heading matrix
Given sample -> sequence_length x num_pedestrians x 2
OR
Given sample and previous_sequence -> batch_size x num_pedestrians x 2
Given p1 at (x1, y1) and p2 at (x2, y2) at t,
absolute bearing is computed as atan2(y2-y1/x2-x1)
Given p1 at (x1, y1) at t-1 and p1 at (x2, y2) at t
absolute heading is computed as atan2(y2-y1/x2-x1)
relative bearing is computed as the difference between absolute bearing and heading of p1
relative heading is computed as the difference between heading of p2 and heading of p1
"""
if not (mean is None) and not (var is None):
mean, var = mean.unsqueeze(neighbors_dim).expand_as(sample), var.unsqueeze(neighbors_dim).expand_as(sample)
sample = (sample)*var+mean
if not (previous_sequence is None):
previous_sequence=(previous_sequence)*var+mean
if not (neighbors_dim==1): sample=sample.transpose(0,1)
s, n = sample.size()[:2]
if len(sample.size())==4: # batch_size x num_pedestrians x pred_len x 2
plen=sample.size(2)
expand_dims = (s, n, plen, n)
n_dims = (1, 3)
elif len(sample.size())==3:
expand_dims=(s, n, n)
n_dims = (1,2)
x1 = sample[...,0] # x for all pedestrians
y1 = sample[...,1] # y for all pedestrians
x1 = x1.unsqueeze(-1).expand(*expand_dims)
y1 = y1.unsqueeze(-1).expand(*expand_dims)
x2 = x1.transpose(*n_dims)
y2 = y1.transpose(*n_dims)
dx = x2-x1 # x for all pedestrians diff.
dy = y2-y1 # y for all pedestrians diff.
bearing=torch.atan2(dy, dx) # absolute bearing
bearing=rad2deg*bearing
bearing = torch.where(bearing<0, bearing+360, bearing)
if len(sample.size())==4:
distance=torch.stack([get_distance_matrix(sample[i,...].transpose(0,1),neighbors_dim=1, mask=mask, eps=eps) for i in range(sample.size(0))], dim=0)
distance=distance.transpose(1,2)
else:
distance=get_distance_matrix(sample,neighbors_dim=1, mask=mask, eps=eps)
heading=get_heading(sample, prev_sample=previous_sequence, mask=mask)
heading = heading.unsqueeze(-1).expand(*expand_dims)
heading = torch.where(heading<0, heading+360, heading)
bearing=bearing-heading #
heading = heading.transpose(*n_dims)-heading
self_tensor = torch.zeros_like(bearing)
self_tensor[:, range(n), ..., range(n)] = 1
bearing.data.masked_fill_(mask=(self_tensor).bool(), value=float(0))
bearing = torch.where(bearing<0, bearing+360, bearing)
heading = torch.where(heading<0, heading+360, heading)
if not mask is None:
bearing, heading, distance = mask_matrix(bearing, mask, n_dims), mask_matrix(heading, mask, n_dims), mask_matrix(distance, mask, n_dims)
if not neighbors_dim==1: distance, bearing, heading = distance.transpose(0,1),bearing.transpose(0,1),heading.transpose(0,1)
return distance, bearing, heading
def get_heading(sample, prev_sample=None, mask=None):
"""
Computes heading matrix
"""
n=sample.size(1)
diff=torch.zeros_like(sample)
if prev_sample is None:
if (len(sample.size())==3):
diff[1:,...]=sample[1:,...]-sample[:-1,...]
diff[0,...] = 2*math.pi*torch.rand(diff[0,...].size()).to(sample.device)+math.pi
diff[0,...]=diff[1,...]
elif (len(sample.size())==4):
diff[:,:,1:,...] = sample[:,:,1:,...]-sample[:,:,:-1,...]
diff[:,:,0,...] = diff[:,:,1,...]
else:
diff=sample-prev_sample # y - y', x - x' (own displacement)
heading = rad2deg * torch.atan2(diff[...,1],diff[...,0]) #+(1e-14)) # absolute heading
return heading
def plot_domain(model, plot_file, delta_heading, delta_bearing):
r = model.spatial_attention.domain.detach().cpu().numpy()
max_dist = np.ceil(np.max(r))
r = np.around(r, 4)
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, projection="polar")
ax.set_theta_zero_location("N")
for phi in range(np.shape(r)[0]):
_phi = delta_heading*phi
r12 = r[phi,:]
domain = np.zeros(360)
deg = 0
for j in range(len(r12)):
domain[int(deg):int(deg+delta_bearing)] = r12[j]
deg+=delta_bearing
offset_bearing=int(delta_bearing/2)
domain = np.roll(domain,offset_bearing)
theta = [math.radians(i) for i in np.arange(0, 360, 1)]
ax.plot(theta, domain, linewidth=1.5, label=str(_phi)+'$^{o}$-' + str(_phi+delta_heading)+ '$^{o}$')
theta_ticks = np.arange(0,360,int(delta_bearing/2))
theta_ticks_labels = [str(int(theta))+"$^{o}$" for theta in theta_ticks]
ax.set_xticks([math.radians(theta) for theta in theta_ticks])
ax.set_xticklabels(theta_ticks_labels, fontsize=14)
ax.legend(loc='upper left',bbox_to_anchor=(1.05,1.05),ncol=1,fontsize="large", title="Relative Heading Angle ($\phi^{21}$)")
ax.tick_params(axis='x', which='major', pad=5)
ax.tick_params(axis="y", labelsize=14)
ax.set_rlabel_position(15)
ax.annotate('$p_{1}$',xy=(-90,0.5),fontsize=15)
ax.arrow(0,0,0,1,alpha = 0.5, width = 0.15,edgecolor = 'black', facecolor = 'black', lw = 2)
ax.grid(linewidth=0.2)
plt.savefig(plot_file)
def evaluate_collisions(testdataset,net,netfile,test_batch_size,thresholds):
net.eval()
ade = float(0)
mean_error = float(0)
fde = float(0)
testloader = DataLoader(testdataset,batch_size=test_batch_size,collate_fn=collate_function(),shuffle=True)
numTest=len(testloader)
coll_array=[]
for threshold in thresholds:
print("Evaluating collisions for threshold: {}".format(threshold))
with torch.no_grad():
num_coll = float(0)
num_total = float(0)
for b, batch in enumerate(testloader):
pred, target, sequence, context_vector, pedestrians = predict(batch,net)
pred = pred.squeeze(0).permute(1,0,2)
dist_matrix = get_distance_matrix(pred,neighbors_dim=1)
count = torch.where(dist_matrix<threshold, torch.ones_like(dist_matrix), torch.zeros_like(dist_matrix))
count = count.sum()-pedestrians*pred.size(0)
count = count/2 # each collision is counted twice
count = count.item()
if (count>0):
num_coll+=1
num_total += 1
print(f"Distance Threshold: {threshold}; Num Collisions: {num_coll}; Num Total Situations: {num_total}")
num_coll_percent = (num_coll/num_total)*100
print(f"Distance Threshold: {threshold}; Num Collisions: {num_coll}; Num Total Situations: {num_total}; % collisions: {num_coll_percent}%")
coll_array+=[num_coll_percent]
return coll_array
def get_free_gpu():
os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp')
memory_available = [int(x.split()[2]) for x in open('tmp', 'r').readlines()]
# os.system("rm -r tmp")
return np.argmax(memory_available)
def init_weights(m):
"""
initializes all weights in all linear layers to xavier normal initialization
"""
classname = m.__class__.__name__
if classname.find('Linear') != -1: nn.init.xavier_normal_(m.weight)
class EarlyStopping:
def __init__(self, patience=40, delta=0.0001):
self.patience=patience
self.counter=0
self.val_loss_min=np.Inf
self.delta=delta
self.early_stop=False
self.best_score=None
def __call__(self, val_loss):
score=-val_loss
if not self.best_score is None and score<(self.best_score+self.delta):
self.counter+=1
if self.counter>=self.patience:
self.early_stop=True
else:
self.best_score=score
self.counter=0