-
Notifications
You must be signed in to change notification settings - Fork 1
/
fwup.conf
442 lines (392 loc) · 19 KB
/
fwup.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# Firmware configuration file for the Raspberry Pi 4
require-fwup-version="0.15.0" # For the trim() call
#
# Firmware metadata
#
# All of these can be overriden using environment variables of the same name.
#
# Run 'fwup -m' to query values in a .fw file.
# Use 'fw_printenv' to query values on the target.
#
# These are used by Nerves libraries to introspect.
define(NERVES_FW_PRODUCT, "Nerves Firmware")
define(NERVES_FW_DESCRIPTION, "")
define(NERVES_FW_VERSION, "${NERVES_SDK_VERSION}")
define(NERVES_FW_PLATFORM, "rpi4")
define(NERVES_FW_ARCHITECTURE, "arm")
define(NERVES_FW_AUTHOR, "The Nerves Team")
define(NERVES_FW_DEVPATH, "/dev/mmcblk0")
define(NERVES_FW_APPLICATION_PART0_DEVPATH, "/dev/mmcblk0p3") # Linux part number is 1-based
define(NERVES_FW_APPLICATION_PART0_FSTYPE, "f2fs")
define(NERVES_FW_APPLICATION_PART0_TARGET, "/root")
define(NERVES_PROVISIONING, "${NERVES_SYSTEM}/images/fwup_include/provisioning.conf")
# Default paths if not specified via the commandline
define(ROOTFS, "${NERVES_SYSTEM}/images/rootfs.squashfs")
# This configuration file will create an image that has an MBR and the
# following 3 partitions:
#
# +----------------------------+
# | MBR |
# +----------------------------+
# | Firmware configuration data|
# | (formatted as uboot env) |
# +----------------------------+
# | p0*: Boot A (FAT32) |
# | kernel8.img, start.elf, |
# | config.txt, etc. |
# +----------------------------+
# | p0*: Boot B (FAT32) |
# +----------------------------+
# | p1*: Rootfs A (squashfs) |
# +----------------------------+
# | p1*: Rootfs B (squashfs) |
# +----------------------------+
# | p2: Application (f2fs) |
# +----------------------------+
#
# The p0/p1 partition points to whichever of configurations A or B that is
# active.
#
# The image is sized to be less than 1 GB so that it fits on nearly any SDCard
# around. If you have a larger SDCard and need more space, feel free to bump
# the partition sizes below.
# The Raspberry Pi is incredibly picky on the partition sizes and in ways that
# I don't understand. Test changes one at a time to make sure that they boot.
# (Sizes are in 512 byte blocks)
define(UBOOT_ENV_OFFSET, 16)
define(UBOOT_ENV_COUNT, 16) # 8 KB
define(BOOT_A_PART_OFFSET, 63)
define(BOOT_A_PART_COUNT, 38630)
define-eval(BOOT_B_PART_OFFSET, "${BOOT_A_PART_OFFSET} + ${BOOT_A_PART_COUNT}")
define(BOOT_B_PART_COUNT, ${BOOT_A_PART_COUNT})
# Let the rootfs have room to grow up to 128 MiB and align it to the nearest 1
# MB boundary
define(ROOTFS_A_PART_OFFSET, 77324)
define(ROOTFS_A_PART_COUNT, 289044)
define-eval(ROOTFS_B_PART_OFFSET, "${ROOTFS_A_PART_OFFSET} + ${ROOTFS_A_PART_COUNT}")
define(ROOTFS_B_PART_COUNT, ${ROOTFS_A_PART_COUNT})
# Application partition. This partition can occupy all of the remaining space.
# Size it to fit the destination.
define-eval(APP_PART_OFFSET, "${ROOTFS_B_PART_OFFSET} + ${ROOTFS_B_PART_COUNT}")
define(APP_PART_COUNT, 1048576)
# Firmware archive metadata
meta-product = ${NERVES_FW_PRODUCT}
meta-description = ${NERVES_FW_DESCRIPTION}
meta-version = ${NERVES_FW_VERSION}
meta-platform = ${NERVES_FW_PLATFORM}
meta-architecture = ${NERVES_FW_ARCHITECTURE}
meta-author = ${NERVES_FW_AUTHOR}
meta-vcs-identifier = ${NERVES_FW_VCS_IDENTIFIER}
meta-misc = ${NERVES_FW_MISC}
# File resources are listed in the order that they are included in the .fw file
# This is important, since this is the order that they're written on a firmware
# update due to the event driven nature of the update system.
file-resource fixup.dat {
host-path = "${NERVES_SYSTEM}/images/rpi-firmware/fixup4x.dat"
}
file-resource start.elf {
host-path = "${NERVES_SYSTEM}/images/rpi-firmware/start4x.elf"
}
file-resource config.txt {
host-path = "${NERVES_SYSTEM}/images/config.txt"
}
file-resource cmdline.txt {
host-path = "${NERVES_SYSTEM}/images/cmdline.txt"
}
file-resource kernel8.img {
host-path = "${NERVES_SYSTEM}/images/Image"
}
file-resource bcm2711-rpi-4-b.dtb {
host-path = "${NERVES_SYSTEM}/images/bcm2711-rpi-4-b.dtb"
}
file-resource bcm2711-rpi-cm4.dtb {
host-path = "${NERVES_SYSTEM}/images/bcm2711-rpi-cm4.dtb"
}
file-resource bcm2711-rpi-400.dtb {
host-path = "${NERVES_SYSTEM}/images/bcm2711-rpi-400.dtb"
}
file-resource rpi-ft5406.dtbo {
host-path = "${NERVES_SYSTEM}/images/rpi-firmware/overlays/rpi-ft5406.dtbo"
}
file-resource rpi-backlight.dtbo {
host-path = "${NERVES_SYSTEM}/images/rpi-firmware/overlays/rpi-backlight.dtbo"
}
file-resource w1-gpio-pullup.dtbo {
host-path = "${NERVES_SYSTEM}/images/rpi-firmware/overlays/w1-gpio-pullup.dtbo"
}
file-resource miniuart-bt.dtbo {
host-path = "${NERVES_SYSTEM}/images/rpi-firmware/overlays/miniuart-bt.dtbo"
}
file-resource vc4-fkms-v3d.dtbo {
host-path = "${NERVES_SYSTEM}/images/rpi-firmware/overlays/vc4-fkms-v3d.dtbo"
}
file-resource dwc2.dtbo {
host-path = "${NERVES_SYSTEM}/images/rpi-firmware/overlays/dwc2.dtbo"
}
file-resource ramoops.dtbo {
host-path = "${NERVES_SYSTEM}/images/ramoops.dtb"
}
file-resource rootfs.img {
host-path = ${ROOTFS}
# Error out if the rootfs size exceeds the partition size
assert-size-lte = ${ROOTFS_A_PART_COUNT}
}
mbr mbr-a {
partition 0 {
block-offset = ${BOOT_A_PART_OFFSET}
block-count = ${BOOT_A_PART_COUNT}
type = 0xc # FAT32
boot = true
}
partition 1 {
block-offset = ${ROOTFS_A_PART_OFFSET}
block-count = ${ROOTFS_A_PART_COUNT}
type = 0x83 # Linux
}
partition 2 {
block-offset = ${APP_PART_OFFSET}
block-count = ${APP_PART_COUNT}
type = 0x83 # Linux
expand = true
}
# partition 3 is unused
}
mbr mbr-b {
partition 0 {
block-offset = ${BOOT_B_PART_OFFSET}
block-count = ${BOOT_B_PART_COUNT}
type = 0xc # FAT32
boot = true
}
partition 1 {
block-offset = ${ROOTFS_B_PART_OFFSET}
block-count = ${ROOTFS_B_PART_COUNT}
type = 0x83 # Linux
}
partition 2 {
block-offset = ${APP_PART_OFFSET}
block-count = ${APP_PART_COUNT}
type = 0x83 # Linux
expand = true
}
# partition 3 is unused
}
# Location where installed firmware information is stored.
# While this is called "u-boot", u-boot isn't involved in this
# setup. It just provides a convenient key/value store format.
uboot-environment uboot-env {
block-offset = ${UBOOT_ENV_OFFSET}
block-count = ${UBOOT_ENV_COUNT}
}
# This firmware task writes everything to the destination media
task complete {
# Only match if not mounted
require-unmounted-destination = true
on-init {
mbr_write(mbr-a)
fat_mkfs(${BOOT_A_PART_OFFSET}, ${BOOT_A_PART_COUNT})
fat_setlabel(${BOOT_A_PART_OFFSET}, "BOOT-A")
fat_mkdir(${BOOT_A_PART_OFFSET}, "overlays")
uboot_clearenv(uboot-env)
include("${NERVES_PROVISIONING}")
uboot_setenv(uboot-env, "nerves_fw_active", "a")
uboot_setenv(uboot-env, "nerves_fw_devpath", ${NERVES_FW_DEVPATH})
uboot_setenv(uboot-env, "a.nerves_fw_application_part0_devpath", ${NERVES_FW_APPLICATION_PART0_DEVPATH})
uboot_setenv(uboot-env, "a.nerves_fw_application_part0_fstype", ${NERVES_FW_APPLICATION_PART0_FSTYPE})
uboot_setenv(uboot-env, "a.nerves_fw_application_part0_target", ${NERVES_FW_APPLICATION_PART0_TARGET})
uboot_setenv(uboot-env, "a.nerves_fw_product", ${NERVES_FW_PRODUCT})
uboot_setenv(uboot-env, "a.nerves_fw_description", ${NERVES_FW_DESCRIPTION})
uboot_setenv(uboot-env, "a.nerves_fw_version", ${NERVES_FW_VERSION})
uboot_setenv(uboot-env, "a.nerves_fw_platform", ${NERVES_FW_PLATFORM})
uboot_setenv(uboot-env, "a.nerves_fw_architecture", ${NERVES_FW_ARCHITECTURE})
uboot_setenv(uboot-env, "a.nerves_fw_author", ${NERVES_FW_AUTHOR})
uboot_setenv(uboot-env, "a.nerves_fw_vcs_identifier", ${NERVES_FW_VCS_IDENTIFIER})
uboot_setenv(uboot-env, "a.nerves_fw_misc", ${NERVES_FW_MISC})
uboot_setenv(uboot-env, "a.nerves_fw_uuid", "\${FWUP_META_UUID}")
}
on-resource config.txt { fat_write(${BOOT_A_PART_OFFSET}, "config.txt") }
on-resource cmdline.txt { fat_write(${BOOT_A_PART_OFFSET}, "cmdline.txt") }
on-resource start.elf { fat_write(${BOOT_A_PART_OFFSET}, "start.elf") }
on-resource fixup.dat { fat_write(${BOOT_A_PART_OFFSET}, "fixup.dat") }
on-resource kernel8.img { fat_write(${BOOT_A_PART_OFFSET}, "kernel8.img") }
on-resource bcm2711-rpi-4-b.dtb { fat_write(${BOOT_A_PART_OFFSET}, "bcm2711-rpi-4-b.dtb") }
on-resource bcm2711-rpi-cm4.dtb { fat_write(${BOOT_A_PART_OFFSET}, "bcm2711-rpi-cm4.dtb") }
on-resource bcm2711-rpi-400.dtb { fat_write(${BOOT_A_PART_OFFSET}, "bcm2711-rpi-400.dtb") }
on-resource rpi-ft5406.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/rpi-ft5406.dtbo") }
on-resource rpi-backlight.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/rpi-backlight.dtbo") }
on-resource w1-gpio-pullup.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/w1-gpio-pullup.dtbo") }
on-resource miniuart-bt.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/miniuart-bt.dtbo") }
on-resource vc4-fkms-v3d.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/vc4-fkms-v3d.dtbo") }
on-resource dwc2.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/dwc2.dtbo") }
on-resource ramoops.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/ramoops.dtbo") }
on-resource rootfs.img {
# write to the first rootfs partition
raw_write(${ROOTFS_A_PART_OFFSET})
}
on-finish {
# Clear out any old data in the B partition that might be mistaken for
# a file system. This is mostly to avoid confusion in humans when
# reprogramming SDCards with unknown contents.
raw_memset(${BOOT_B_PART_OFFSET}, 256, 0xff)
raw_memset(${ROOTFS_B_PART_OFFSET}, 256, 0xff)
# Invalidate the application data partition so that it is guaranteed to
# trigger the corrupt filesystem detection code on first boot and get
# formatted. If this isn't done and an old SDCard is reused, the
# application data could be in a weird state.
raw_memset(${APP_PART_OFFSET}, 256, 0xff)
}
}
task upgrade.a {
# This task upgrades the A partition
require-partition-offset(1, ${ROOTFS_B_PART_OFFSET})
# Verify the expected platform/architecture
require-uboot-variable(uboot-env, "b.nerves_fw_platform", "${NERVES_FW_PLATFORM}")
require-uboot-variable(uboot-env, "b.nerves_fw_architecture", "${NERVES_FW_ARCHITECTURE}")
on-init {
info("Upgrading partition A")
# Clear some firmware information just in case this update gets
# interrupted midway. If this partition was bootable, it's not going to
# be soon.
uboot_unsetenv(uboot-env, "a.nerves_fw_version")
uboot_unsetenv(uboot-env, "a.nerves_fw_platform")
uboot_unsetenv(uboot-env, "a.nerves_fw_architecture")
uboot_unsetenv(uboot-env, "a.nerves_fw_uuid")
# Reset the previous contents of the A boot partition
fat_mkfs(${BOOT_A_PART_OFFSET}, ${BOOT_A_PART_COUNT})
fat_setlabel(${BOOT_A_PART_OFFSET}, "BOOT-A")
fat_mkdir(${BOOT_A_PART_OFFSET}, "overlays")
# Indicate that the entire partition can be cleared
trim(${ROOTFS_A_PART_OFFSET}, ${ROOTFS_A_PART_COUNT})
}
# Write the new boot partition files and rootfs. The MBR still points
# to the B partition, so an error or power failure during this part
# won't hurt anything.
on-resource config.txt { fat_write(${BOOT_A_PART_OFFSET}, "config.txt") }
on-resource cmdline.txt { fat_write(${BOOT_A_PART_OFFSET}, "cmdline.txt") }
on-resource start.elf { fat_write(${BOOT_A_PART_OFFSET}, "start.elf") }
on-resource fixup.dat { fat_write(${BOOT_A_PART_OFFSET}, "fixup.dat") }
on-resource kernel8.img { fat_write(${BOOT_A_PART_OFFSET}, "kernel8.img") }
on-resource bcm2711-rpi-4-b.dtb { fat_write(${BOOT_A_PART_OFFSET}, "bcm2711-rpi-4-b.dtb") }
on-resource bcm2711-rpi-cm4.dtb { fat_write(${BOOT_A_PART_OFFSET}, "bcm2711-rpi-cm4.dtb") }
on-resource bcm2711-rpi-400.dtb { fat_write(${BOOT_A_PART_OFFSET}, "bcm2711-rpi-400.dtb") }
on-resource rpi-ft5406.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/rpi-ft5406.dtbo") }
on-resource rpi-backlight.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/rpi-backlight.dtbo") }
on-resource w1-gpio-pullup.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/w1-gpio-pullup.dtbo") }
on-resource miniuart-bt.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/miniuart-bt.dtbo") }
on-resource vc4-fkms-v3d.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/vc4-fkms-v3d.dtbo") }
on-resource dwc2.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/dwc2.dtbo") }
on-resource ramoops.dtbo { fat_write(${BOOT_A_PART_OFFSET}, "overlays/ramoops.dtbo") }
on-resource rootfs.img {
delta-source-raw-offset=${ROOTFS_B_PART_OFFSET}
delta-source-raw-count=${ROOTFS_B_PART_COUNT}
raw_write(${ROOTFS_A_PART_OFFSET})
}
on-finish {
# Update firmware metadata
uboot_setenv(uboot-env, "a.nerves_fw_application_part0_devpath", ${NERVES_FW_APPLICATION_PART0_DEVPATH})
uboot_setenv(uboot-env, "a.nerves_fw_application_part0_fstype", ${NERVES_FW_APPLICATION_PART0_FSTYPE})
uboot_setenv(uboot-env, "a.nerves_fw_application_part0_target", ${NERVES_FW_APPLICATION_PART0_TARGET})
uboot_setenv(uboot-env, "a.nerves_fw_product", ${NERVES_FW_PRODUCT})
uboot_setenv(uboot-env, "a.nerves_fw_description", ${NERVES_FW_DESCRIPTION})
uboot_setenv(uboot-env, "a.nerves_fw_version", ${NERVES_FW_VERSION})
uboot_setenv(uboot-env, "a.nerves_fw_platform", ${NERVES_FW_PLATFORM})
uboot_setenv(uboot-env, "a.nerves_fw_architecture", ${NERVES_FW_ARCHITECTURE})
uboot_setenv(uboot-env, "a.nerves_fw_author", ${NERVES_FW_AUTHOR})
uboot_setenv(uboot-env, "a.nerves_fw_vcs_identifier", ${NERVES_FW_VCS_IDENTIFIER})
uboot_setenv(uboot-env, "a.nerves_fw_misc", ${NERVES_FW_MISC})
uboot_setenv(uboot-env, "a.nerves_fw_uuid", "\${FWUP_META_UUID}")
# Switch over to boot the new firmware
uboot_setenv(uboot-env, "nerves_fw_active", "a")
mbr_write(mbr-a)
}
on-error {
}
}
task upgrade.b {
# This task upgrades the B partition
require-partition-offset(1, ${ROOTFS_A_PART_OFFSET})
# Verify the expected platform/architecture
require-uboot-variable(uboot-env, "a.nerves_fw_platform", "${NERVES_FW_PLATFORM}")
require-uboot-variable(uboot-env, "a.nerves_fw_architecture", "${NERVES_FW_ARCHITECTURE}")
on-init {
info("Upgrading partition B")
# Clear some firmware information just in case this update gets
# interrupted midway.
uboot_unsetenv(uboot-env, "b.nerves_fw_version")
uboot_unsetenv(uboot-env, "b.nerves_fw_platform")
uboot_unsetenv(uboot-env, "b.nerves_fw_architecture")
uboot_unsetenv(uboot-env, "b.nerves_fw_uuid")
# Reset the previous contents of the B boot partition
fat_mkfs(${BOOT_B_PART_OFFSET}, ${BOOT_B_PART_COUNT})
fat_setlabel(${BOOT_B_PART_OFFSET}, "BOOT-B")
fat_mkdir(${BOOT_B_PART_OFFSET}, "overlays")
trim(${ROOTFS_B_PART_OFFSET}, ${ROOTFS_B_PART_COUNT})
}
# Write the new boot partition files and rootfs. The MBR still points
# to the A partition, so an error or power failure during this part
# won't hurt anything.
on-resource config.txt { fat_write(${BOOT_B_PART_OFFSET}, "config.txt") }
on-resource cmdline.txt { fat_write(${BOOT_B_PART_OFFSET}, "cmdline.txt") }
on-resource start.elf { fat_write(${BOOT_B_PART_OFFSET}, "start.elf") }
on-resource fixup.dat { fat_write(${BOOT_B_PART_OFFSET}, "fixup.dat") }
on-resource kernel8.img { fat_write(${BOOT_B_PART_OFFSET}, "kernel8.img") }
on-resource bcm2711-rpi-4-b.dtb { fat_write(${BOOT_B_PART_OFFSET}, "bcm2711-rpi-4-b.dtb") }
on-resource bcm2711-rpi-cm4.dtb { fat_write(${BOOT_B_PART_OFFSET}, "bcm2711-rpi-cm4.dtb") }
on-resource bcm2711-rpi-400.dtb { fat_write(${BOOT_B_PART_OFFSET}, "bcm2711-rpi-400.dtb") }
on-resource rpi-ft5406.dtbo { fat_write(${BOOT_B_PART_OFFSET}, "overlays/rpi-ft5406.dtbo") }
on-resource rpi-backlight.dtbo { fat_write(${BOOT_B_PART_OFFSET}, "overlays/rpi-backlight.dtbo") }
on-resource w1-gpio-pullup.dtbo { fat_write(${BOOT_B_PART_OFFSET}, "overlays/w1-gpio-pullup.dtbo") }
on-resource miniuart-bt.dtbo { fat_write(${BOOT_B_PART_OFFSET}, "overlays/miniuart-bt.dtbo") }
on-resource vc4-fkms-v3d.dtbo { fat_write(${BOOT_B_PART_OFFSET}, "overlays/vc4-fkms-v3d.dtbo") }
on-resource dwc2.dtbo { fat_write(${BOOT_B_PART_OFFSET}, "overlays/dwc2.dtbo") }
on-resource ramoops.dtbo { fat_write(${BOOT_B_PART_OFFSET}, "overlays/ramoops.dtbo") }
on-resource rootfs.img {
delta-source-raw-offset=${ROOTFS_A_PART_OFFSET}
delta-source-raw-count=${ROOTFS_A_PART_COUNT}
raw_write(${ROOTFS_B_PART_OFFSET})
}
on-finish {
# Update firmware metadata
uboot_setenv(uboot-env, "b.nerves_fw_application_part0_devpath", ${NERVES_FW_APPLICATION_PART0_DEVPATH})
uboot_setenv(uboot-env, "b.nerves_fw_application_part0_fstype", ${NERVES_FW_APPLICATION_PART0_FSTYPE})
uboot_setenv(uboot-env, "b.nerves_fw_application_part0_target", ${NERVES_FW_APPLICATION_PART0_TARGET})
uboot_setenv(uboot-env, "b.nerves_fw_product", ${NERVES_FW_PRODUCT})
uboot_setenv(uboot-env, "b.nerves_fw_description", ${NERVES_FW_DESCRIPTION})
uboot_setenv(uboot-env, "b.nerves_fw_version", ${NERVES_FW_VERSION})
uboot_setenv(uboot-env, "b.nerves_fw_platform", ${NERVES_FW_PLATFORM})
uboot_setenv(uboot-env, "b.nerves_fw_architecture", ${NERVES_FW_ARCHITECTURE})
uboot_setenv(uboot-env, "b.nerves_fw_author", ${NERVES_FW_AUTHOR})
uboot_setenv(uboot-env, "b.nerves_fw_vcs_identifier", ${NERVES_FW_VCS_IDENTIFIER})
uboot_setenv(uboot-env, "b.nerves_fw_misc", ${NERVES_FW_MISC})
uboot_setenv(uboot-env, "b.nerves_fw_uuid", "\${FWUP_META_UUID}")
# Switch over to boot the new firmware
uboot_setenv(uboot-env, "nerves_fw_active", "b")
mbr_write(mbr-b)
}
on-error {
}
}
task upgrade.unexpected {
require-uboot-variable(uboot-env, "a.nerves_fw_platform", "${NERVES_FW_PLATFORM}")
require-uboot-variable(uboot-env, "a.nerves_fw_architecture", "${NERVES_FW_ARCHITECTURE}")
on-init {
error("Please check the media being upgraded. It doesn't look like either the A or B partitions are active.")
}
}
task upgrade.wrongplatform {
on-init {
error("Expecting platform=${NERVES_FW_PLATFORM} and architecture=${NERVES_FW_ARCHITECTURE}")
}
}
task provision {
require-uboot-variable(uboot-env, "a.nerves_fw_platform", "${NERVES_FW_PLATFORM}")
require-uboot-variable(uboot-env, "a.nerves_fw_architecture", "${NERVES_FW_ARCHITECTURE}")
on-init {
include("${NERVES_PROVISIONING}")
}
}
task provision.wrongplatform {
on-init {
error("Expecting platform=${NERVES_FW_PLATFORM} and architecture=${NERVES_FW_ARCHITECTURE}")
}
}