forked from microsoft/ai-edu
-
Notifications
You must be signed in to change notification settings - Fork 276
/
up2down_model.py
85 lines (69 loc) · 2.89 KB
/
up2down_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import json
from functools import reduce
# Dependency imports
from tensor2tensor.bin import t2t_trainer # important
from tensor2tensor.utils import usr_dir
from tensor2tensor.serving import serving_utils
from tensor2tensor.utils import registry
from tensor2tensor.utils import hparam
import tensorflow as tf
# Load config
with open('./config.json','r') as f:
config = json.load(f)
flags = tf.flags
FLAGS = flags.FLAGS
FLAGS.t2t_usr_dir = config['t2t_usr_dir']
FLAGS.problem = config['problem']
FLAGS.model = config['model_name']
server_address = config['server_address']
class up2down_class:
def __init__(self,FLAGS,server_address='127.0.0.1:9000'):
print('Initializing up2down_class.......')
self.FLAGS = FLAGS
self.server_address = server_address
tf.logging.set_verbosity(tf.logging.ERROR)
usr_dir.import_usr_dir(self.FLAGS.t2t_usr_dir)
# hparams: not important but necessary, an assertion error will be raised without hparams.
self.hparams = hparam.HParams(data_dir=os.path.expanduser(self.FLAGS.t2t_usr_dir))
# problem
self.problem = registry.problem(self.FLAGS.problem)
self.problem.get_hparams(self.hparams)
# model request server
self.request_fn = self.make_request_fn(self.FLAGS.model, self.server_address)
def make_request_fn(self, server_name, server_address):
"""Returns a request function."""
request_fn = serving_utils.make_grpc_request_fn(
servable_name=server_name,
server=server_address,
timeout_secs=10)
return request_fn
def get_down_couplet(self, input_sentence_raw_list):
input_sentence_list = self.format_input(input_sentence_raw_list)
# do inference
raw_outputs = serving_utils.predict(input_sentence_list, self.problem, self.request_fn)
outputs = self.format_output(raw_outputs)
return outputs
def format_input(self, input_sentence_raw_list):
input_sentence_list = []
for input_sentence in input_sentence_raw_list:
input_sentence_modify = ""
for chr in input_sentence.strip():
input_sentence_modify += chr
input_sentence_modify += " "
input_sentence_modify = input_sentence_modify[:-1]
input_sentence_list.append(input_sentence_modify)
print("input sentences: " + str(input_sentence_list))
return input_sentence_list
def format_output(self, raw_outputs):
outputs = []
for raw_output in raw_outputs:
out = raw_output[0].replace(' ', '').replace('<EOS>', '').replace('<pad>', '')
outputs.append(out)
return outputs
### Export model ###
up2down = up2down_class(FLAGS,server_address) # inference model