-
Notifications
You must be signed in to change notification settings - Fork 2
/
gpustruct.py
233 lines (197 loc) · 7.83 KB
/
gpustruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#
# GPUStruct
#
import numpy as np
import struct
import pycuda.driver as cuda
class GPUStruct(object):
def __init__(self, objs):
"""
Initialize the link to the struct on the GPU device.
objs - must be a list of variable in the order they are in the
C struct. Pointers are indicated with a * as in C.
kwargs - sets the values of this struct.
For example, if the struct is like this:
struct Results
{
unsigned int n; //, __padding;
float k;
float *A;
float *B;
};
your initialization could look like this:
res = GPUStruct([(np.uint32,'n', 10),
(np.float32,'k', 0),
(np.float32,'*A', np.zeros(10,dtype=np.float32)),
(np.float32,'*B', np.ones(10,dtype=np.float32))])
You can then use it like this:
func(res.get_ptr(),block=(1,1,1))
And get data like this:
res.copy_from_gpu()
res.A
res.B
res.n
"""
# set the objs
#self.__formats,self.__objs = zip(*[(obj[0],obj[1]) for obj in objs])
# make them tuples to prevent modification
self.__objs = []
self.__objnames = []
inits = {}
for obj in objs:
oname = obj[1].replace('*','')
self.__objs.append((obj[0],obj[1]))
self.__objnames.append(oname)
inits[oname] = obj[2]
# make them both tuples
self.__objs = tuple(self.__objs)
self.__objnames = tuple(self.__objnames)
#self.__objs = tuple(objs)
#self.__objnames = tuple([obj.replace('*','') for fmt,obj in self.__objs])
# set a dict for holding nbytes
self.__nbytes = {}
self.__ptrs = {}
# loop over objs, setting attributes from kwargs
for fmt,obj in self.__objs:
if obj.find('*') == 0:
# set the obj name without the *
obj = obj[1:]
# it's a pointer
self.__ptrs[obj] = None
# also save the data
#setattr(self,obj,kwargs[obj])
setattr(self,obj,inits[obj])
self.__ptr = None
self.__fromstr = None
def __del__(self):
# loop and delete non-none pointers
for ptr in self.__ptrs:
if not self.__ptrs[ptr] is None:
# free it
self.__ptrs[ptr].free()
self.__ptrs[ptr] = None
if not self.__ptr is None:
# free the main pointer struct
self.__ptr.free()
self.__ptr = None
def __str__(self):
ostring = ""
for oname in self.__objnames:
ostring+="%s: %s\n" % (oname, str(getattr(self,oname)))
return ostring
def copy_to_gpu(self, skip=None):
# get skip list
if skip is None:
skip = []
# loop over obj and send the data for the pointers
for fmt,obj in self.__objs:
if obj.find('*') == 0:
# set the obj name without the *
obj = obj[1:]
# verify the nbytes did not change, if so, free old
# ptr and allocate for new one.
# get the current bytes
dat = np.ascontiguousarray(fmt(getattr(self,obj)))
cur_nbytes = dat.nbytes
if self.__nbytes.has_key(obj) and \
self.__nbytes[obj] != cur_nbytes:
# free it
self.__ptrs[obj].free()
self.__ptrs[obj] = None
# see if we need to reallocate
if self.__ptrs[obj] is None:
# create mem for the pointer
self.__nbytes[obj] = cur_nbytes
self.__ptrs[obj] = cuda.mem_alloc(cur_nbytes)
# send the data to the memory space
if not obj in skip:
cuda.memcpy_htod(self.__ptrs[obj],dat)
# pack everything and send struct to device
self.__packstr = self._pack()
if self.__ptr is None:
# send it for the first time
self.__ptr = cuda.to_device(self.__packstr)
else:
# copy out to the existing pointer
cuda.memcpy_htod(self.__ptr, self.__packstr)
# create a fromstring to get data back
self.__fromstr = np.array(' '*len(self.__packstr))
def get_ptr(self):
if self.__ptr is None:
raise RuntimeError("You never called copy_to_gpu.")
return self.__ptr
def get_packed(self):
return self.__packstr
def _pack(self):
packed = ''
self.__fmt = ''
topack = []
for fmt,obj in self.__objs:
if obj.find('*') == 0:
# set the obj name without the *
obj = obj[1:]
# is pointer
self.__fmt += 'P'
topack.append(np.intp(int(self.__ptrs[obj])))
else:
# is normal, so just get it
toadd = fmt(getattr(self,obj))
self.__fmt += toadd.dtype.char
topack.append(toadd)
# pack it up
return struct.pack(self.__fmt,*topack)
def copy_from_gpu(self, skip=None):
# try:
# # try and get the passed struct back
# cuda.memcpy_dtoh(self.__fromstr, self.__ptr)
# self.__unpacked = struct.unpack(self.__fmt, self.__fromstr)
# except:
# # just use the original packstr
# self.__unpacked = struct.unpack(self.__fmt, self.__packstr)
# get skip list
if skip is None:
skip = []
# makre sure we've sent there
if self.__fromstr is None:
raise RuntimeError("You never called copy_to_gpu.")
# try and get the passed struct back
cuda.memcpy_dtoh(self.__fromstr, self.__ptr)
self.__unpacked = struct.unpack(self.__fmt, self.__fromstr)
# now fill the attributes from the unpacked data
for ind,(fmt,obj) in enumerate(self.__objs):
if obj.find('*') == 0:
# set the obj name without the *
obj = obj[1:]
# is a pointer, so retrieve from card
if not obj in skip:
# first make sure dest is correct datatype
setattr(self,obj,fmt(getattr(self, obj)))
cuda.memcpy_dtoh(getattr(self, obj),
self.__ptrs[obj])
else:
# get it from the unpacked values
# trying to keep the dtype with a hack
#setattr(self, obj,
# getattr(np,str(getattr(self,obj).dtype))(self.__unpacked[ind]))
setattr(self, obj,
fmt(self.__unpacked[ind]))
# def __getattr__(self, attr):
# if attr in self.__objnames:
# if self.__unpacked is None:
# # must retrieve first
# self.retrieve()
# # get the index
# ind = self.__objnames.index(attr)
# if '*'+attr == self.__objs[ind]:
# # is pointer, so retrieve from card
# data = getattr(self, self.__objnames[ind]+'_data')
# cuda.memcpy_dtoh(data,getattr(self,self.__objnames[ind]))
# return data
# #return cuda.from_device(getattr(self,self.__objnames[ind]),
# # data.shape,
# # data.dtype)
# else:
# # just lookup in unpacked
# return self.__unpacked[ind]
# else:
# raise AttributeError("Attribute not found %s." % (attr))