-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimulation.py
725 lines (619 loc) · 31.1 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
"""
This script runs 15 simulations (each corresponding to a different starting
ratio) in Cantera.
Reactor conditions are replicated from: "Methane catalytic partial oxidation on
autothermal Rh and Pt foam catalysts: Oxidation and reforming zones, transport
effects,and approach to thermodynamic equilibrium"
Horn 2007, doi:10.1016/j.jcat.2007.05.011
Ref 17: "Syngas by catalytic partial oxidation of methane on rhodium:
Mechanistic conclusions from spatially resolved measurements and numerical
simulations"
Horn 2006, doi:10.1016/j.jcat.2006.05.008
Ref 18: "Spatial and temporal profiles in millisecond partial oxidation
processes"
Horn 2006, doi:10.1007/s10562-006-0117-8
"""
import cantera as ct
import numpy as np
import scipy
import pylab
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.pyplot import cm
from matplotlib.ticker import NullFormatter, MaxNLocator, LogLocator
plt.switch_backend('agg') # needed for saving figures
import csv
import os
# import rmgpy
# import rmg
import re
import operator
import pandas as pd
import pylab
from cycler import cycler
import seaborn as sns
import os
import multiprocessing
from functools import partial
import threading
import itertools
# unit conversion factors to SI
mm = 0.001
cm = 0.01
ms = mm
minute = 60.0
#######################################################################
# Input Parameters
#######################################################################
t_in = 800 # K - in the paper, it was ~698.15K at the start of the cat surface and ~373.15 for the gas inlet temp
t_cat = t_in
length = 70 * mm # Reactor length - m
diam = 16.5 * mm # Reactor diameter - in m, from Ref 17 & Ref 18
area = (diam/2.0)**2*np.pi # Reactor cross section area (area of tube) in m^2
porosity = 0.81 # Monolith channel porosity, from Ref 17, sec 2.2.2
cat_area_per_vol = 1.6e4 # m2/m3, which is 160 cm2/cm3, as used in Horn 2006
cat_area_per_vol *= 0.05 # to make the concentrations change slower
flow_rate = 4.7 # slpm, as seen in as seen in Horn 2007
tot_flow = 0.208 # constant inlet flow rate in mol/min, equivalent to 4.7 slpm
flow_rate = flow_rate * .001 / 60 # m^3/s, as seen in as seen in Horn 2007
velocity = flow_rate / area # m/s
# The PFR will be simulated by a chain of 'N_reactors' stirred reactors.
N_reactors = 7001
on_catalyst = 1000 # catalyst length 10mm, from Ref 17
off_catalyst = 2000
dt = 1.0
# new sensitivities
# length = 510 * mm # Reactor length - m
# N_reactors = 51001
# on_catalyst = 1000 # catalyst length 10mm, from Ref 17
# off_catalyst = 51000
reactor_len = length/(N_reactors-1)
rvol = area * reactor_len * porosity
# catalyst area in one reactor
cat_area = cat_area_per_vol * rvol
# root directory for output files
out_root = '/home/xu.chao/sketches/cpox_sim/rmg_models/base_cathub'
residence_time = reactor_len / velocity # unit in s
def setup_ct_solution(path_to_cti):
# this chemkin file is from the cti generated by rmg
gas = ct.Solution(path_to_cti, 'gas')
surf = ct.Interface(path_to_cti, 'surface1', [gas])
print("This mechanism contains {} gas reactions and {} surface reactions".format(gas.n_reactions, surf.n_reactions))
print(f"Thread ID from threading{threading.get_ident()}")
i_ar = gas.species_index('Ar')
return {'gas':gas, 'surf':surf,"i_ar":i_ar,"n_surf_reactions":surf.n_reactions}
def plot_gas(data, path_to_cti, x_lim=None):
"""
Plots gas-phase species profiles through the PFR.
xlim is either None or a tuple (x_min, x_max)
"""
gas_out, surf_out, gas_names, surf_names, dist_array, T_array, i_ar, n_surf_reactions = data
# Plot in mol/min
fig, axs = plt.subplots()
axs.set_prop_cycle(cycler('color', ['m', 'g', 'b', 'y', 'c', 'k', 'g']))
for i in range(len(gas_out[0, :])):
if i != i_ar:
if gas_out[:, i].max() > 5.e-3:
axs.plot(dist_array, gas_out[:, i], label=gas_names[i])
species_name = gas_names[i]
if species_name.endswith(')'):
if species_name[-3] == '(':
species_name = species_name[0:-3]
else:
species_name = species_name[0:-4]
else:
axs.plot(0, 0)
axs.set_prop_cycle(cycler('color', ['m', 'g', 'b', 'y', 'c', 'r', 'k', 'g']))
ax2 = axs.twinx()
ax2.plot(dist_array, T_array, label='temperature', color='r')
axs.plot([dist_array[on_catalyst], dist_array[on_catalyst]], [0, 0.15], linestyle='--', color='xkcd:grey')
# print(dist_array[off_catalyst])
axs.plot([dist_array[off_catalyst], dist_array[off_catalyst]], [0, 0.15], linestyle='--', color='xkcd:grey')
axs.annotate("catalyst", fontsize=13, xy=(dist_array[1500], 0.14), va='center', ha='center')
for item in (
axs.get_xticklabels() + axs.get_yticklabels() + ax2.get_xticklabels() + ax2.get_yticklabels()):
item.set_fontsize(13)
axs.legend(loc='upper center', bbox_to_anchor=(0.5, -0.2), fancybox=False, shadow=False, ncol=4)
if x_lim is not None:
x_min, x_max = x_lim
axs.set_xlim(float(x_min), float(x_max))
ax2.set_xlim(float(x_min), float(x_max))
else:
axs.set_xlim(0.0, length / mm)
ax2.set_xlim(0.0, length / mm)
axs.set_ylim(0., 0.15)
ax2.set_ylim(600, 2400)
axs.set_xlabel('Position (mm)', fontsize=16)
axs.set_ylabel('Flow (mol/min)', fontsize=16)
ax2.set_ylabel('Temperature (K)', fontsize=16)
for n in range(len(gas_names)):
if gas_names[n] == 'CH4(2)':
c_in = gas_out[0][n]
if gas_names[n] == 'O2(3)':
o_in = gas_out[0][n]
ratio = round(c_in / (o_in * 2), 1)
out_dir = os.path.join(out_root, 'figures')
os.path.exists(out_dir) or os.makedirs(out_dir)
if x_lim is not None:
fig.savefig(out_dir + '/' + str(ratio) + 'ratioZoom.pdf', bbox_inches='tight',)
else:
fig.savefig(out_dir + '/' + str(ratio) + 'ratioFull.pdf', bbox_inches='tight',)
def plot_surf(data, path_to_cti):
"""Plots surface site fractions through the PFR."""
gas_out, surf_out, gas_names, surf_names, dist_array, T_array, i_ar, n_surf_reactions = data
fig, axs = plt.subplots()
axs.set_prop_cycle(cycler('color', ['m', 'g', 'b', 'y', 'c', 'r', 'k', 'g']))
# Plot two temperatures (of gas-phase and surface vs only surface.)
for i in range(len(surf_out[0, :])):
if surf_out[:, i].max() > 5.e-3:
axs.plot(dist_array, surf_out[:, i], label=surf_names[i])
axs.plot([dist_array[on_catalyst], dist_array[on_catalyst]], [0, 1.2], linestyle='--', color='xkcd:grey')
# axs.plot([dist_array[off_catalyst], dist_array[off_catalyst]], [0, 1.2], linestyle='--', color='xkcd:grey')
axs.annotate("catalyst", fontsize=13, xy=(dist_array[1500], 1.1), va='center', ha='center')
for item in (
axs.get_xticklabels() + axs.get_yticklabels()):
item.set_fontsize(13)
axs.legend(loc='upper center', bbox_to_anchor=(0.5, -0.2), fancybox=False, shadow=False, ncol=4)
axs.set_ylim(0, 1.2)
axs.set_xlim(8, 22)
axs.set_xlabel('Position (mm)', fontsize=16)
axs.set_ylabel('Site fraction', fontsize=16)
# temperature = np.round(T_array[0],0)
for n in range(len(gas_names)):
if gas_names[n] == 'CH4(2)':
c_in = gas_out[0][n]
if gas_names[n] == 'O2(3)':
o_in = gas_out[0][n]
ratio = c_in / (o_in * 2)
ratio = round(ratio, 1)
surface_name = os.path.split(path_to_cti)[-1][0:-5]
out_dir = os.path.join(out_root, 'figures')
os.path.exists(out_dir) or os.makedirs(out_dir)
fig.savefig(out_dir + '/' + str(ratio) + 'surf.pdf', bbox_inches='tight')
def monolith_simulation(path_to_cti, temp, mol_in, rtol, atol, verbose=False, sens=False):
"""
Set up and solve the monolith reactor simulation.
Verbose prints out values as you go along
Sens is for sensitivity, in the form [perturbation, reaction #]
Args:
path_to_cti: full path to the cti file
temp (float): The temperature in Kelvin
mol_in (3-tuple or iterable): the inlet molar ratios of (CH4, O2, He)
verbose (Boolean): whether to print intermediate results
sens (False or 2-tuple/list): if not False, then should be a 2-tuple or list [dk, rxn]
in which dk = relative change (eg. 0.01) and rxn = the index of the surface reaction rate to change
Returns:
gas_out, # gas molar flow rate in moles/minute
surf_out, # surface mole fractions
gas_names, # gas species names
surf_names, # surface species names
dist_array, # distances (in mm)
T_array # temperatures (in K)
"""
sols_dict = setup_ct_solution(path_to_cti)
gas, surf, i_ar, n_surf_reactions= sols_dict['gas'], sols_dict['surf'], sols_dict['i_ar'],sols_dict['n_surf_reactions']
print(f"Running monolith simulation with CH4 and O2 concs {mol_in[0], mol_in[1]} on thread {threading.get_ident()}")
ch4, o2, ar = mol_in
ratio = ch4 / (2 * o2)
X = f"CH4(2):{ch4}, O2(3):{o2}, Ar:{ar}"
gas.TPX = 273.15, ct.one_atm, X # need to initialize mass flow rate at STP
# mass_flow_rate = velocity * gas.density_mass * area # kg/s
mass_flow_rate = flow_rate * gas.density_mass
gas.TPX = temp, ct.one_atm, X
temp_cat = temp
surf.TP = temp_cat, ct.one_atm
surf.coverages = 'X(1):1.0'
gas.set_multiplier(1.0)
TDY = gas.TDY
cov = surf.coverages
if verbose is True:
print(' distance(mm) X_CH4 X_O2 X_H2 X_CO X_H2O X_CO2')
# create a new reactor
gas.TDY = TDY
r = ct.IdealGasReactor(gas)
r.volume = rvol
# create a reservoir to represent the reactor immediately upstream. Note
# that the gas object is set already to the state of the upstream reactor
upstream = ct.Reservoir(gas, name='upstream')
# create a reservoir for the reactor to exhaust into. The composition of
# this reservoir is irrelevant.
downstream = ct.Reservoir(gas, name='downstream')
# Add the reacting surface to the reactor. The area is set to the desired
# catalyst area in the reactor.
rsurf = ct.ReactorSurface(surf, r, A=cat_area)
# The mass flow rate into the reactor will be fixed by using a
# MassFlowController object.
# mass_flow_rate = velocity * gas.density_mass * area # kg/s
# mass_flow_rate = flow_rate * gas.density_mass
m = ct.MassFlowController(upstream, r, mdot=mass_flow_rate)
# We need an outlet to the downstream reservoir. This will determine the
# pressure in the reactor. The value of K will only affect the transient
# pressure difference.
v = ct.PressureController(r, downstream, master=m, K=1e-5)
sim = ct.ReactorNet([r])
sim.max_err_test_fails = 12
# set relative and absolute tolerances on the simulation
sim.rtol = rtol
sim.atol = atol
gas_names = gas.species_names
surf_names = surf.species_names
gas_out = []
surf_out = []
dist_array = []
T_array = []
net_rates_of_progress = []
rsurf.kinetics.set_multiplier(0.0) # no surface reactions until the gauze
for n in range(N_reactors):
# Set the state of the reservoir to match that of the previous reactor
gas.TDY = r.thermo.TDY
upstream.syncState()
if n == on_catalyst:
rsurf.kinetics.set_multiplier(1.0)
if sens is not False:
rsurf.kinetics.set_multiplier(1.0 + sens[0], sens[1])
if n == off_catalyst:
rsurf.kinetics.set_multiplier(0.0)
sim.reinitialize()
sim.advance(sim.time + 1e4 * residence_time)
dist = n * reactor_len * 1.0e3 # distance in mm
dist_array.append(dist)
T_array.append(rsurf.kinetics.T)
kmole_flow_rate = mass_flow_rate / gas.mean_molecular_weight # kmol/s
gas_out.append(1000 * 60 * kmole_flow_rate * r.kinetics.X.copy()) # molar flow rate in moles/minute
surf_out.append(rsurf.kinetics.X.copy())
net_rates_of_progress.append(rsurf.kinetics.net_rates_of_progress)
# stop simulation when things are done changing, to avoid getting so many COVDES errors
if n >= 1001:
if np.max(abs(np.subtract(gas_out[-2], gas_out[-1]))) < 1e-15:
break
# make reaction diagrams
out_dir = 'rxnpath'
os.path.exists(out_dir) or os.makedirs(out_dir)
elements = ['H', 'O', 'C']
locations_of_interest = [1045, 1800]
if sens is False:
if n in locations_of_interest:
location = str(int(n / 100))
diagram = ct.ReactionPathDiagram(surf, 'X')
diagram.title = 'rxn path'
diagram.label_threshold = 1e-9
dot_file = f"{out_dir}/rxnpath-{ratio:.1f}-x-{location}mm.dot"
img_file = f"{out_dir}/rxnpath-{ratio:.1f}-x-{location}mm.png"
diagram.write_dot(dot_file)
os.system('dot {0} -Tpng -o{1} -Gdpi=200'.format(dot_file, img_file))
for element in elements:
diagram = ct.ReactionPathDiagram(surf, element)
diagram.title = element + 'rxn path'
diagram.label_threshold = 1e-9
dot_file = f"{out_dir}/rxnpath-{ratio:.1f}-x-{location}mm-{element}.dot"
img_file = f"{out_dir}/rxnpath-{ratio:.1f}-x-{location}mm-{element}.png"
diagram.write_dot(dot_file)
os.system('dot {0} -Tpng -o{1} -Gdpi=200'.format(dot_file, img_file))
# df = pd.DataFrame(surf.net_rates_of_progress)
# df.to_csv(f"{out_dir}/net_rates_{ratio:.1f}_{location}.csv")
if verbose is True:
if not n % 100:
print(' {0:10f} {1:10f} {2:10f} {3:10f} {4:10f} {5:10f} {6:10f}'.format(dist, *gas[
'CH4(2)', 'O2(3)', 'H2(6)', 'CO(7)', 'H2O(5)', 'CO2(4)'].X * 1000 * 60 * kmole_flow_rate))
gas_out = np.array(gas_out)
surf_out = np.array(surf_out)
gas_names = np.array(gas_names)
surf_names = np.array(surf_names)
data_out = gas_out, surf_out, gas_names, surf_names, dist_array, T_array, i_ar, n_surf_reactions
net_rates_of_progress = np.array(net_rates_of_progress)
df = pd.DataFrame(net_rates_of_progress)
out_dir = os.path.join(out_root, 'rates_of_progress')
os.path.exists(out_dir) or os.makedirs(out_dir)
df.to_csv(f"{out_dir}/net_rates_{ratio:.1f}.csv")
print(len(dist_array))
print(f"Finished monolith simulation for CH4 and O2 concs {mol_in[0], mol_in[1]} on thread {threading.get_ident()}")
return data_out
def run_one_simulation(path_to_cti, rtol, atol, ratio):
"""
Start all of the simulations all at once using multiprocessing
"""
plot_generated = False
fo2 = 1 / (2. * ratio + 1 + 79. / 21.)
fch4 = 2 * fo2 * ratio
far = 79 * fo2 / 21
ratio_in = [fch4, fo2, far] # mol fractions
tl_list = [[tl, tl**2] for tl in [1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3]]
try:
a = monolith_simulation(path_to_cti, t_in, ratio_in, rtol, atol)
gas_out, surf_out, gas_names, surf_names, dist_array, T_array, i_ar, n_surf_reactions = a
except ct.CanteraError:
tl = 0
while tl < len(tl_list):
try:
a = monolith_simulation(path_to_cti, t_in, ratio_in, tl_list[tl][0], tl_list[tl][1])
gas_out, surf_out, gas_names, surf_names, dist_array, T_array, i_ar, n_surf_reactions = a
except ct.CanteraError as e:
if tl == len(tl_list) - 1:
raise e
else:
print("SOLVER ERROR, GOING TO TRY AGAIN........")
tl += 1
if len(dist_array) == 7001:
break
if len(dist_array) < 7001:
for tl in tl_list:
try:
sim_result = monolith_simulation(path_to_cti, t_in, ratio_in, tl[0], tl[1])
gas_out, surf_out, gas_names, surf_names, dist_array, T_array, i_ar, n_surf_reactions = sim_result
except ct.CanteraError as e:
gas_out, surf_out, gas_names, surf_names, dist_array, T_array, i_ar, n_surf_reactions = a
if len(dist_array) == 7001:
plot_gas(sim_result, path_to_cti)
plot_gas(sim_result,path_to_cti, x_lim=(8,25))
plot_surf(sim_result, path_to_cti)
plot_generated = True
break
if plot_generated is False:
try:
plot_gas(a, path_to_cti)
plot_gas(a,path_to_cti, x_lim=(8,25))
plot_surf(a, path_to_cti)
except Exception as e:
print(f"somthing wrong at ratio={ratio}")
print(str(e))
return [ratio, [gas_out, gas_names, dist_array, T_array, n_surf_reactions]]
def deriv(gas_out):
deriv = []
for x in range(len(gas_out) - 1):
deriv.append((gas_out[x+1] - gas_out[x])/.01)
deriv.append(0.)
return deriv
def calculate(data, type='sens'):
"""
Calculate properties of interest from the raw data
:param data: the data
:param type: 'sens' for sensitivity analyses
'output' for saving the output csv
'ratio' for plotting
:return:
"""
gas_out_data, gas_names_data, dist_array_data, T_array_data, n_surf_reactions = data
reference = []
for a in range(len(gas_names_data)):
reference.append([gas_names_data[a], [gas_out_data[:, a]]])
# This is the index the choose
# sens_id = np.array(T_array_data).argmax() // 2
# if sens_id <= 1000 or sens_id >= 2000:
# sens_id = 1010
sens_id = 1045
for x in reference:
if x[0] == 'CH4(2)':
ch4_in = x[1][0][0]
ch4_out = x[1][0][sens_id]
if ch4_out < 0:
ch4_out = 0.
ch4_depletion = ch4_in - ch4_out
reference_ch4_conv = ch4_depletion / ch4_in # Sensitivity definition 7: CH4 conversion
d_ch4 = deriv(x[1][0])
reference_max_ch4_conv = min(d_ch4) # Sensitivity definition 15: maximum rate of CH4 conversion
conv50_pos = 0
for y in range(len(x[1][0])):
if (ch4_in - x[1][0][y]) / ch4_in >= 0.5:
if conv50_pos == 0:
conv50_pos = y
reference_dist_to_50_ch4_conv = dist_array_data[conv50_pos] # Sensitivity definition 14: distance to 50% CH4 conversion
else:
# never reached 50% conversion
reference_dist_to_50_ch4_conv = 510.
if x[0] == 'Ar':
ar = x[1][0][sens_id]
if x[0] == 'O2(3)':
o2_in = x[1][0][0]
o2_out = x[1][0][sens_id]
if o2_out < 0:
o2_out = 0. # O2 can't be negative
elif o2_out > o2_in:
o2_out = o2_in # O2 can't be created, to make it equal to O2 in
o2_depletion = o2_in - o2_out
reference_o2_conv = o2_depletion / o2_in # Sensitivity definition 13: O2 conversion
if x[0] == 'CO(7)':
co_out = x[1][0][sens_id]
if x[0] == 'H2(6)':
h2_out = x[1][0][sens_id]
if x[0] == 'H2O(5)':
h2o_out = x[1][0][sens_id]
if x[0] == 'CO2(4)':
co2_out = x[1][0][sens_id]
ratio = ch4_in / (2 * o2_in)
# negative sensitivity is higher selectivity
reference_h2_sel = h2_out / (ch4_depletion * 2) # Sensitivity definition 5: H2 selectivity
if reference_h2_sel <= 0:
reference_h2_sel = 1.0e-15 # selectivity can't be 0
reference_co_sel = co_out / ch4_depletion # Sensitivity definition 3: CO selectivity
if reference_co_sel <= 0:
reference_co_sel = 1.0e-15 # selectivity can't be 0
reference_syngas_selectivity = reference_co_sel + reference_h2_sel # Sensitivity definition 1: SYNGAS selectivity
reference_syngas_yield = reference_syngas_selectivity * reference_ch4_conv # Sensitivity definition 2: SYNGAS yield
if reference_syngas_yield <= 0:
reference_syngas_yield = 1.0e-15 # yield can't be 0
reference_co_yield = co_out / ch4_in # Sensitivity definition 4: CO % yield
# reference_co_yield = reference_co_sel * reference_ch4_conv
reference_h2_yield = h2_out / (2 * ch4_in) # Sensitivity definition 6: H2 % yield
# reference_h2_yield = reference_h2_sel * reference_ch4_conv
# Sensitivity definition 8: H2O + CO2 selectivity
reference_h2o_sel = h2o_out / (ch4_depletion * 2)
reference_co2_sel = co2_out / ch4_depletion
if reference_h2o_sel <= 0:
reference_h2o_sel = 1.0e-15 # H2O selectivity can't be 0
if reference_co2_sel <= 0:
reference_co2_sel = 1.0e-15 # CO2 selectivity can't be 0
reference_full_oxidation_selectivity = reference_h2o_sel + reference_co2_sel
# Sensitivity definition 9: H2O + CO2 yield
reference_full_oxidation_yield = reference_full_oxidation_selectivity * reference_ch4_conv
# Sensitivity definition 10: exit temperature
reference_exit_temp = T_array_data[-1]
# Sensitivity definition 11: peak temperature
reference_peak_temp = max(T_array_data)
# Sensitivity definition 12: distance to peak temperautre
reference_peak_temp_dist = dist_array_data[T_array_data.index(max(T_array_data))]
if type is 'sens':
return reference_syngas_selectivity, reference_syngas_yield, reference_co_sel, reference_co_yield, reference_h2_sel, reference_h2_yield, reference_ch4_conv, reference_full_oxidation_selectivity, reference_full_oxidation_yield, reference_exit_temp, reference_peak_temp, reference_peak_temp_dist, reference_o2_conv, reference_max_ch4_conv, reference_dist_to_50_ch4_conv
elif type is 'ratio':
return reference_co_sel, reference_h2_sel, reference_ch4_conv, reference_exit_temp, reference_o2_conv, reference_co2_sel, reference_h2o_sel
elif type is 'gas_data':
return ratio, reference
else:
return ratio, ch4_in, ch4_out, co_out, h2_out, h2o_out, co2_out, reference_exit_temp, reference_peak_temp, reference_peak_temp_dist, reference_o2_conv, reference_max_ch4_conv, reference_dist_to_50_ch4_conv
def calc_sensitivities(reference, new, surf, index=None):
"""Calculates sensitivities given old simulation results and perturbed simulation results"""
reference_syngas_selectivity, reference_syngas_yield, reference_co_sel, reference_co_yield, reference_h2_sel, reference_h2_yield, reference_ch4_conv, reference_full_oxidation_selectivity, reference_full_oxidation_yield, reference_exit_temp, reference_peak_temp, reference_peak_temp_dist, reference_o2_conv, reference_max_ch4_conv, reference_dist_to_50_ch4_conv = reference
new_syngas_selectivity, new_syngas_yield, new_co_sel, new_co_yield, new_h2_sel, new_h2_yield, new_ch4_conv, new_full_oxidation_selectivity, new_full_oxidation_yield, new_exit_temp, new_peak_temp, new_peak_temp_dist, new_o2_conv, new_max_ch4_conv, new_dist_to_50_ch4_conv = new
Sens5 = (new_h2_sel - reference_h2_sel) / (reference_h2_sel * dk)
Sens3 = (new_co_sel - reference_co_sel) / (reference_co_sel * dk)
Sens1 = (new_syngas_selectivity - reference_syngas_selectivity) / (reference_syngas_selectivity * dk)
Sens2 = (new_syngas_yield - reference_syngas_yield) / (reference_syngas_yield * dk)
Sens4 = (new_co_yield - reference_co_yield) / (reference_co_yield * dk)
Sens6 = (new_h2_yield - reference_h2_yield) / (reference_h2_yield * dk)
Sens7 = (new_ch4_conv - reference_ch4_conv) / (
reference_ch4_conv * dk)
Sens13 = (new_o2_conv - reference_o2_conv) / (reference_o2_conv * dk)
Sens8 = (new_full_oxidation_selectivity - reference_full_oxidation_selectivity) / (
reference_full_oxidation_selectivity * dk)
Sens9 = (new_full_oxidation_yield - reference_full_oxidation_yield) / (reference_full_oxidation_yield * dk)
Sens10 = (new_exit_temp - reference_exit_temp) / (reference_exit_temp * dk)
Sens11 = (new_peak_temp - reference_peak_temp) / (reference_peak_temp * dk)
Sens12 = (new_peak_temp_dist - reference_peak_temp_dist) / (reference_peak_temp_dist * dk)
Sens14 = (new_max_ch4_conv - reference_max_ch4_conv) / (reference_max_ch4_conv * dk)
Sens15 = (new_dist_to_50_ch4_conv - reference_dist_to_50_ch4_conv) / (reference_dist_to_50_ch4_conv * dk)
if index is not None:
rxn = surf.reaction_equations()[index]
return rxn, Sens1, Sens2, Sens3, Sens4, Sens5, Sens6, Sens7, Sens8, Sens9, Sens10, Sens11, Sens12, Sens13, Sens14, Sens15
else:
return Sens1, Sens2, Sens3, Sens4, Sens5, Sens6, Sens7, Sens8, Sens9, Sens10, Sens11, Sens12, Sens13, Sens14, Sens15
def plot_ratio_comparisions(path_to_cti, data):
ratios = [d[0] for d in data]
fig, axs = plt.subplots(1, 2)
# plot exit conversion and temp
ch4_conv = [d[1][2] for d in data]
axs[0].plot(ratios, ch4_conv, 'bo-', label='CH4', color='limegreen')
o2_conv = [d[1][4] for d in data]
axs[0].plot(ratios, o2_conv, 'bo-', label='O2', color='blue')
ax2 = axs[0].twinx()
temp = [d[1][3] for d in data]
ax2.plot(ratios, temp, 'bo-', label='temp', color='orange')
ax2.set_ylim(600.0, 2000)
# plot exit selectivities
co_sel = [d[1][0] for d in data]
axs[1].plot(ratios, co_sel, 'bo-', label='CO', color='green')
h2_sel = [d[1][1] for d in data]
axs[1].plot(ratios, h2_sel, 'bo-', label='H2', color='purple')
co2_sel = [d[1][5] for d in data]
axs[1].plot(ratios, co2_sel, 'bo-', label='CO2', color='navy')
h2o_sel = [d[1][6] for d in data]
axs[1].plot(ratios, h2o_sel, 'bo-', label='H2O', color='dodgerblue')
axs[0].legend()
axs[1].legend()
axs[0].set_ylabel('Exit conversion (%)', fontsize=13)
ax2.set_ylabel('Exit temperature (K)', fontsize=13)
axs[0].set_xlabel('C/O Ratio', fontsize=13)
axs[1].set_xlabel('C/O Ratio', fontsize=13)
axs[1].set_ylabel('Exit selectivity (%)', fontsize=13)
plt.tight_layout()
fig.set_figheight(6)
fig.set_figwidth(16)
out_dir = os.path.join(out_root, 'figures')
os.path.exists(out_dir) or os.makedirs(out_dir)
fig.savefig(out_dir + '/' + 'conversion&selectivity.pdf', bbox_inches='tight')
def sensitivity(path_to_cti, old_data, temp, dk, rtol, atol):
"""
Rerun simulations for each perturbed surface reaction and compare to the
original simulation (data) to get a numerical value for sensitivity.
"""
sensitivity_results = []
gas_out_data, gas_names_data, dist_array_data, T_array_data, n_surf_reactions = old_data
surf = setup_ct_solution(path_to_cti)['surf']
reference = []
for a in range(len(gas_names_data)):
reference.append([gas_names_data[a], [gas_out_data[:, a]]])
# getting the ratio
for x in reference:
if x[0] == 'CH4(2)':
ch4_in = x[1][0][0]
if x[0] == 'O2(3)':
o2_in = x[1][0][0]
if x[0] == 'Ar':
ar_in = x[1][0][0]
ratio = ch4_in / (2 * o2_in)
moles_in = [ch4_in, o2_in, ar_in]
reference_data = calculate(old_data)
# run the simulations
for rxn in range(n_surf_reactions):
try:
gas_out, surf_out, gas_names, surf_names, dist_array, T_array, i_ar, n_surf_reactions_from_sim = monolith_simulation(path_to_cti, temp, moles_in, rtol, atol, sens=[dk, rxn])
c = [gas_out, gas_names, dist_array, T_array, n_surf_reactions_from_sim]
new_data = calculate(c, type='sens')
sensitivities = calc_sensitivities(reference_data, new_data, surf, index=rxn)
sensitivity_results.append(sensitivities)
except Exception as e:
print(str(e))
print(f"solver issue for reaction {rxn}, writing everything to zero")
sensitivities = ('solver crash', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
sensitivity_results.append(sensitivities)
return sensitivity_results
def export(path_to_cti, rxns_translated, ratio, rtol, atol):
k = (pd.DataFrame.from_dict(data=rxns_translated, orient='columns'))
k.columns = ['Reaction', 'SYNGAS Selec', 'SYNGAS Yield', 'CO Selectivity', 'CO % Yield', 'H2 Selectivity', 'H2 % Yield',
'CH4 Conversion', 'H2O+CO2 Selectivity', 'H2O+CO2 yield', 'Exit Temp', 'Peak Temp',
'Dist to peak temp', 'O2 Conversion', 'Max CH4 Conv', 'Dist to 50 CH4 Conv']
surface_name = os.path.split(path_to_cti)[-1][0:-5]
out_dir = os.path.join(out_root, f'sensitivities/{ratio}')
os.path.exists(out_dir) or os.makedirs(out_dir)
k.to_csv(out_dir + '/{:.1f}RxnSensitivity_rtol{:.2e}_atol{:.2e}.csv'.format(ratio, rtol, atol), header=True)
def sensitivity_worker(path_to_cti, rtol, atol, data):
print('Starting sensitivity simulation for a C/O ratio of {:.1f}'.format(data[0]))
old_data = data[1][0]
ratio = data[0]
sensitivities = sensitivity(path_to_cti, old_data, t_in, dk, rtol, atol)
print('Finished sensitivity simulation for a C/O ratio of {:.1f}'.format(ratio))
reactions = [d[0] for d in sensitivities] # getting the reactions
sensitivities = [list(s) for s in sensitivities]
for x in range(len(reactions)):
sensitivities[x][0] = reactions[x]
export(path_to_cti, sensitivities, ratio, tols[0], tols[1])
if __name__ == "__main__":
# ratios = [.6, .7, .8, .9, 1., 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2., 2.2, 2.4, 2.6]
rtols = [1.0e-8]
atols = [1.0e-16]
tol_comb = []
for rtol in rtols:
for atol in atols:
tol_comb.append([rtol, atol])
for tols in tol_comb:
# ratios = [.6, .7, .8, .9, 1., 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2., 2.2, 2.4, 2.6]
ratios = [.6, 1., 1.1, 1.2, 1.6, 2., 2.6]
data = []
num_threads = min(multiprocessing.cpu_count(), len(ratios))
pool = multiprocessing.Pool(processes=num_threads)
data = pool.map(partial(run_one_simulation, 'cantera.yaml', tols[0], tols[1]), ratios, 1) #use functools partial
pool.close()
pool.join()
output = []
for r in data:
output.append(calculate(r[1], type='output'))
k = (pd.DataFrame.from_dict(data=output, orient='columns'))
k.columns = ['C/O ratio', 'CH4 in', 'CH4 out', 'CO out', 'H2 out', 'H2O out', 'CO2 out', 'Exit temp', 'Max temp', 'Dist to max temp', 'O2 conv', 'Max CH4 Conv', 'Dist to 50 CH4 Conv']
data_dir = os.path.join(out_root, 'sim_data')
os.path.exists(data_dir) or os.makedirs(data_dir)
k.to_csv(os.path.join(out_root, f'sim_data/complete_rtol_{tols[0]}_atol_{tols[1]}_data.csv'), header=True) # raw data
# save gas profiles
out_dir = os.path.join(out_root, f'gas_profiles')
os.path.exists(out_dir) or os.makedirs(out_dir)
for r in data:
ratio, gas_profiles = calculate(r[1], type='gas_data')
names = [i[0] for i in gas_profiles]
gas_profiles_output = [i[1] for i in gas_profiles]
gas_profiles_out = []
for x in gas_profiles_output:
gas_profiles_out.append(x[0].tolist())
k = (pd.DataFrame(gas_profiles_out))
k.to_csv(f'{out_dir}/gas_out' + str(ratio) + '.csv', header=True)
ratio_comparison = []
for r in data:
ratio_comparison.append([r[0], calculate(r[1], type='ratio')])
plot_ratio_comparisions('cantera.yaml', ratio_comparison)