forked from ReactionMechanismGenerator/RMG-database
-
Notifications
You must be signed in to change notification settings - Fork 2
/
kineticsGroups.py
872 lines (744 loc) · 38.6 KB
/
kineticsGroups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
#!/usr/bin/env python
# encoding: utf-8
"""
This script is used for working with the kinetics group additivity values in
RMG. There are several different types of operations this script can do, and
each of these has a number of required and optional command-line arguments.
Use the "-h" flag to get more information.
"""
import os.path
import time
import math
import numpy
import pylab
import scipy.stats
import matplotlib
matplotlib.rc('mathtext', fontset='stixsans', default='regular')
import re
import rmgpy
from rmgpy.quantity import constants
from rmgpy.kinetics import Arrhenius, ArrheniusEP, KineticsData
from rmgpy.data.base import getAllCombinations
from importOldDatabase import getUsername
user = getUsername()
################################################################################
def loadDatabase():
print 'Loading RMG database...'
from rmgpy.data.rmg import RMGDatabase
database = RMGDatabase()
database.load('input')
return database
def getRateCoefficientUnits(family):
"""
For the given reaction `family`, return the units of its forward kinetics.
This is hardcoding of reaction families, but at least it will fail loudly
if it encounters an unexpected family.
"""
if family.label in ['H_Abstraction', 'R_Addition_MultipleBond', 'R_Recombination', 'Disproportionation', '1+2_Cycloaddition', '2+2_cycloaddition_Cd', '2+2_cycloaddition_CO', '2+2_cycloaddition_CCO', 'Diels_alder_addition', '1,2_Insertion', '1,3_Insertion_CO2', '1,3_Insertion_ROR', 'R_Addition_COm', 'Oa_R_Recombination']:
return 'm^3/(mol*s)'
elif family.label in ['intra_H_migration', 'Birad_recombination', 'intra_OH_migration', 'HO2_Elimination_from_PeroxyRadical', 'Cyclic_Ether_Formation', 'Intra_R_Add_Exocyclic', 'Intra_R_Add_Endocyclic', '1,2-Birad_to_alkene', 'Intra_Disproportionation']:
return 's^-1'
else:
raise ValueError('Unable to determine units of rate coefficient for reaction family "{0}".'.format(family.label))
def convertKineticsToPerSiteBasis(kinetics, degeneracy):
"""
Given high-pressure-limit `kinetics` which includes reaction-path
`degeneracy`, convert the kinetics to be on a per-site basis.
"""
if isinstance(kinetics, KineticsData):
kinetics.kdata.values /= degeneracy
elif isinstance(kinetics, Arrhenius):
kinetics.A.value /= degeneracy
elif isinstance(kinetics, ArrheniusEP):
kinetics.A.value /= degeneracy
else:
raise Exception('Unable to convert kinetics of type {0} to per-site basis.'.format(kinetics.__class__))
return kinetics
def createDataSet(labels, family, database):
dataset = []
for label in labels:
data = []
if label in ['rules']:
depository = getattr(family,label)
else:
label = '{0}/{1}'.format(family.label, label)
for depository in family.depositories:
if depository.label == label:
break
else:
raise ValueError('Invalid value "{0}" for label parameter.'.format(label))
for entry in depository.entries.values():
if isinstance(entry.data, ArrheniusEP):
if entry.data.alpha.value != 0:
continue # skip things with Evans-Polanyi values
reaction, template = database.kinetics.getForwardReactionForFamilyEntry(entry=entry, family=family.label, thermoDatabase=database.thermo)
data.append([reaction, template, entry])
if len(data) > 0:
dataset.append([label, data])
return dataset
################################################################################
def generateKineticsGroupValues(family, database, trainingSetLabels, method):
"""
Evaluate the kinetics group additivity values for the given reaction
`family` using the specified lists of depository components
`trainingSetLabels` as the training set. The already-loaded RMG database
should be given as the `database` parameter.
"""
kunits = getRateCoefficientUnits(family)
print 'Categorizing reactions in training sets for {0}'.format(family.label)
trainingSets = createDataSet(trainingSetLabels, family, database)
trainingSet = []
for label, data in trainingSets:
trainingSet.extend(data)
#reactions = [reaction for label, trainingSet in trainingSets for reaction, template, entry in trainingSet]
#templates = [template for label, trainingSet in trainingSets for reaction, template, entry in trainingSet]
#entries = [entry for label, trainingSet in trainingSets for reaction, template, entry in trainingSet]
print 'Fitting new group additivity values for {0}...'.format(family.label)
# keep track of previous values so we can detect if they change
old_entries = dict()
for label,entry in family.groups.entries.iteritems():
if entry.data is not None:
old_entries[label] = entry.data
# Determine a complete list of the entries in the database, sorted as in the tree
groupEntries = family.groups.top[:]
for entry in family.groups.top:
groupEntries.extend(family.groups.descendants(entry))
# Determine a unique list of the groups we will be able to fit parameters for
groupList = []
for reaction, template, entry in trainingSet:
for group in template:
if group not in family.groups.top:
groupList.append(group)
groupList.extend(family.groups.ancestors(group)[:-1])
groupList = list(set(groupList))
groupList.sort(key=lambda x: x.index)
if method == 'KineticsData':
# Fit a discrete set of k(T) data points by training against k(T) data
Tdata = [300,400,500,600,800,1000,1500,2000]
#kmodel = numpy.zeros_like(kdata)
# Initialize dictionaries of fitted group values and uncertainties
groupValues = {}; groupUncertainties = {}; groupCounts = {}; groupComments = {}
for entry in groupEntries:
groupValues[entry] = []
groupUncertainties[entry] = []
groupCounts[entry] = []
groupComments[entry] = set()
# Generate least-squares matrix and vector
A = []; b = []
kdata = []
for reaction, template, entry in trainingSet:
if isinstance(reaction.kinetics, Arrhenius) or isinstance(reaction.kinetics, KineticsData):
kd = [reaction.kinetics.getRateCoefficient(T) / reaction.degeneracy for T in Tdata]
elif isinstance(reaction.kinetics, ArrheniusEP):
kd = [reaction.kinetics.getRateCoefficient(T, 0) / reaction.degeneracy for T in Tdata]
else:
raise Exception('Unexpected kinetics model of type {0} for reaction {1}.'.format(reaction.kinetics.__class__, reaction))
kdata.append(kd)
# Create every combination of each group and its ancestors with each other
combinations = []
for group in template:
groups = [group]; groups.extend(family.groups.ancestors(group))
combinations.append(groups)
combinations = getAllCombinations(combinations)
# Add a row to the matrix for each combination
for groups in combinations:
Arow = [1 if group in groups else 0 for group in groupList]
Arow.append(1)
brow = [math.log10(k) for k in kd]
A.append(Arow); b.append(brow)
for group in groups:
groupComments[group].add("{0!s}".format(template))
if len(A) == 0:
logging.warning('Unable to fit kinetics groups for family "{0}"; no valid data found.'.format(family.groups.label))
return
A = numpy.array(A)
b = numpy.array(b)
kdata = numpy.array(kdata)
x, residues, rank, s = numpy.linalg.lstsq(A, b)
for t, T in enumerate(Tdata):
# Determine error in each group (on log scale)
stdev = numpy.zeros(len(groupList)+1, numpy.float64)
count = numpy.zeros(len(groupList)+1, numpy.int)
for index in range(len(trainingSet)):
reaction, template, entry = trainingSet[index]
kd = math.log10(kdata[index,t])
km = x[-1,t] + sum([x[groupList.index(group),t] for group in template if group in groupList])
variance = (km - kd)**2
for group in template:
groups = [group]; groups.extend(family.groups.ancestors(group))
for g in groups:
if g not in family.groups.top:
ind = groupList.index(g)
stdev[ind] += variance
count[ind] += 1
stdev[-1] += variance
count[-1] += 1
stdev = numpy.sqrt(stdev / (count - 1))
ci = scipy.stats.t.ppf(0.975, count - 1) * stdev
# Update dictionaries of fitted group values and uncertainties
for entry in groupEntries:
if entry == family.groups.top[0]:
groupValues[entry].append(10**x[-1,t])
groupUncertainties[entry].append(10**ci[-1])
groupCounts[entry].append(count[-1])
elif entry in groupList:
index = groupList.index(entry)
groupValues[entry].append(10**x[index,t])
groupUncertainties[entry].append(10**ci[index])
groupCounts[entry].append(count[index])
else:
groupValues[entry] = None
groupUncertainties[entry] = None
groupCounts[entry] = None
# Store the fitted group values and uncertainties on the associated entries
for entry in groupEntries:
if groupValues[entry] is not None:
entry.data = KineticsData(Tdata=(Tdata,"K"), kdata=(groupValues[entry],kunits))
if not any(numpy.isnan(numpy.array(groupUncertainties[entry]))):
entry.data.kdata.uncertainties = numpy.array(groupUncertainties[entry])
entry.data.kdata.uncertaintyType = '*|/'
entry.shortDesc = "Group additive kinetics."
entry.longDesc = "Fitted to {0} rates.\n".format(groupCounts[entry])
entry.longDesc += "\n".join(groupComments[entry])
else:
entry.data = None
# Print the group values
print '=============================== =========== =========== =========== ======='
print 'Group T (K) k(T) (SI) CI (95%) Count'
print '=============================== =========== =========== =========== ======='
entry = family.groups.top[0]
for i in range(len(entry.data.Tdata.values)):
label = ', '.join(['%s' % (top.label) for top in family.groups.top]) if i == 0 else ''
T = Tdata[i]
value = groupValues[entry][i]
uncertainty = groupUncertainties[entry][i]
count = groupCounts[entry][i]
print '%-31s %-11g %-11.4e %-11.4e %-7i' % (label, T, value, uncertainty, count)
print '------------------------------- ----------- ----------- ----------- -------'
for entry in groupEntries:
if entry.data is not None:
for i in range(len(entry.data.Tdata.values)):
label = entry.label if i == 0 else ''
T = Tdata[i]
value = groupValues[entry][i]
uncertainty = groupUncertainties[entry][i]
count = groupCounts[entry][i]
print '%-31s %-11g %-11.4e %-11.4e %-7i' % (label, T, value, uncertainty, count)
print '=============================== =========== =========== =========== ======='
elif method == 'Arrhenius':
# Fit Arrhenius parameters (A, n, Ea) by training against k(T) data
Tdata = [300,400,500,600,800,1000,1500,2000]
A = []; b = []
kdata = []
for reaction, template, entry in trainingSet:
if isinstance(reaction.kinetics, Arrhenius) or isinstance(reaction.kinetics, KineticsData):
kd = [reaction.kinetics.getRateCoefficient(T) / reaction.degeneracy for T in Tdata]
elif isinstance(reaction.kinetics, ArrheniusEP):
kd = [reaction.kinetics.getRateCoefficient(T, 0) / reaction.degeneracy for T in Tdata]
else:
raise Exception('Unexpected kinetics model of type {0} for reaction {1}.'.format(reaction.kinetics.__class__, reaction))
kdata.append(kd)
# Create every combination of each group and its ancestors with each other
combinations = []
for group in template:
groups = [group]; groups.extend(family.groups.ancestors(group))
combinations.append(groups)
combinations = getAllCombinations(combinations)
# Add a row to the matrix for each combination at each temperature
for t, T in enumerate(Tdata):
logT = math.log(T)
Tinv = 1000.0 / (constants.R * T)
for groups in combinations:
Arow = []
for group in groupList:
if group in groups:
Arow.extend([1,logT,-Tinv])
else:
Arow.extend([0,0,0])
Arow.extend([1,logT,-Tinv])
brow = math.log(kd[t])
A.append(Arow); b.append(brow)
if len(A) == 0:
logging.warning('Unable to fit kinetics groups for family "{0}"; no valid data found.'.format(family.groups.label))
return
A = numpy.array(A)
b = numpy.array(b)
kdata = numpy.array(kdata)
x, residues, rank, s = numpy.linalg.lstsq(A, b)
# Store the results
family.groups.top[0].data = Arrhenius(
A = (math.exp(x[-3]),kunits),
n = x[-2],
Ea = (x[-1]*1000.,"J/mol"),
T0 = (1,"K"),
)
for i, group in enumerate(groupList):
group.data = Arrhenius(
A = (math.exp(x[3*i]),kunits),
n = x[3*i+1],
Ea = (x[3*i+2]*1000.,"J/mol"),
T0 = (1,"K"),
)
# Print the results
print '======================================= =========== =========== ==========='
print 'Group log A (SI) n Ea (kJ/mol) '
print '======================================= =========== =========== ==========='
entry = family.groups.top[0]
label = ', '.join(['%s' % (top.label) for top in family.groups.top])
logA = math.log10(entry.data.A.value)
n = entry.data.n.value
Ea = entry.data.Ea.value / 1000.
print '%-39s %11.3f %11.3f %11.3f' % (label, logA, n, Ea)
print '--------------------------------------- ----------- ----------- -----------'
for i, group in enumerate(groupList):
label = group.label
logA = math.log10(group.data.A.value)
n = group.data.n.value
Ea = group.data.Ea.value / 1000.
print '%-39s %11.3f %11.3f %11.3f' % (label, logA, n, Ea)
print '======================================= =========== =========== ==========='
elif method == 'Arrhenius2':
# Fit Arrhenius parameters (A, n, Ea) by training against (A, n, Ea) values
A = []; b = []
for reaction, template, entry in trainingSet:
# Create every combination of each group and its ancestors with each other
combinations = []
for group in template:
groups = [group]; groups.extend(family.groups.ancestors(group))
combinations.append(groups)
combinations = getAllCombinations(combinations)
# Add a row to the matrix for each parameter
if isinstance(entry.data, Arrhenius) or (isinstance(entry.data, ArrheniusEP) and entry.data.alpha.value == 0):
for groups in combinations:
Arow = []
for group in groupList:
if group in groups:
Arow.append(1)
else:
Arow.append(0)
Arow.append(1)
Ea = entry.data.E0.value if isinstance(entry.data, ArrheniusEP) else entry.data.Ea.value
brow = [math.log(entry.data.A.value), entry.data.n.value, Ea / 1000.]
A.append(Arow); b.append(brow)
if len(A) == 0:
logging.warning('Unable to fit kinetics groups for family "{0}"; no valid data found.'.format(family.groups.label))
return
A = numpy.array(A)
b = numpy.array(b)
x, residues, rank, s = numpy.linalg.lstsq(A, b)
# Store the results
family.groups.top[0].data = Arrhenius(
A = (math.exp(x[-1,0]),kunits),
n = x[-1,1],
Ea = (x[-1,2]*1000.,"J/mol"),
T0 = (1,"K"),
)
for i, group in enumerate(groupList):
group.data = Arrhenius(
A = (math.exp(x[i,0]),kunits),
n = x[i,1],
Ea = (x[i,2]*1000.,"J/mol"),
T0 = (1,"K"),
)
# Print the results
print '======================================= =========== =========== ==========='
print 'Group log A (SI) n Ea (kJ/mol) '
print '======================================= =========== =========== ==========='
entry = family.groups.top[0]
label = ', '.join(['%s' % (top.label) for top in family.groups.top])
logA = math.log10(entry.data.A.value)
n = entry.data.n.value
Ea = entry.data.Ea.value / 1000.
print '%-39s %11.3f %11.3f %11.3f' % (label, logA, n, Ea)
print '--------------------------------------- ----------- ----------- -----------'
for i, group in enumerate(groupList):
label = group.label
logA = math.log10(group.data.A.value)
n = group.data.n.value
Ea = group.data.Ea.value / 1000.
print '%-39s %11.3f %11.3f %11.3f' % (label, logA, n, Ea)
print '======================================= =========== =========== ==========='
# Add a note to the history of each changed item indicating that we've generated new group values
changed = False
event = [time.asctime(),user,'action','Generated new group additivity values for this entry.']
for label, entry in family.groups.entries.iteritems():
if entry.data is not None and old_entries.has_key(label):
if (isinstance(entry.data, KineticsData) and
isinstance(old_entries[label], KineticsData) and
len(entry.data.kdata.values) == len(old_entries[label].kdata.values) and
all(abs(entry.data.kdata.values / old_entries[label].kdata.values - 1) < 0.01)):
#print "New group values within 1% of old."
pass
elif (isinstance(entry.data, Arrhenius) and
isinstance(old_entries[label], Arrhenius) and
abs(entry.data.A.value / old_entries[label].A.value - 1) < 0.01 and
abs(entry.data.n.value / old_entries[label].n.value - 1) < 0.01 and
abs(entry.data.Ea.value / old_entries[label].Ea.value - 1) < 0.01 and
abs(entry.data.T0.value / old_entries[label].T0.value - 1) < 0.01):
#print "New group values within 1% of old."
pass
else:
changed = True
entry.history.append(event)
return changed
################################################################################
def evaluateKineticsGroupValues(family, database, testSetLabels, mode, plot):
"""
Evaluate the kinetics group additivity values for the given reaction
`family` using the specified lists of depository components
`testSetLabels` as the test set. The already-loaded RMG database should be
given as the `database` parameter.
"""
kunits = getRateCoefficientUnits(family)
# If in Java mode, only keep test sets with RMG-Java data
if mode == 'java':
testSetLabels0 = testSetLabels; testSetLabels = []
for label in testSetLabels0:
if os.path.exists(os.path.join('input', 'kinetics', 'families', family.label, '{0}_RMG_Java.py'.format(label))):
# Okay, we've found RMG-Java data
testSetLabels.append(label)
testSetLabels.append('{0}_RMG_Java'.format(label))
print 'Categorizing reactions in test sets for {0}'.format(family.label)
testSets = createDataSet(testSetLabels, family, database)
# For each entry in each test set, determine the kinetics as predicted by
# RMG-Py and as given by the entry in the test set
# Note that this is done on a per-site basis!
if mode == 'python':
kineticsModels = []; kineticsData = []
for testSetLabel, testSet in testSets:
for index in range(len(testSet)):
reaction, template, entry = testSet[index]
kmodel = family.getKineticsForTemplate(template, degeneracy=1)
kdata = convertKineticsToPerSiteBasis(entry.data, reaction.degeneracy)
testSet[index] = reaction, template, entry, kmodel, kdata
elif mode == 'java':
testSets0 = testSets; testSets = []
# Every other item in the test sets should be an RMG-Java library
for index in range(len(testSets0)/2):
testSetLabel, testSet0 = testSets0[2*index]
testSet0JavaLabel, testSet0Java = testSets0[2*index+1]
testSet = []
for reaction0, template0, entry0 in testSet0:
for reaction, template, entry in testSet0Java:
if entry0.index == entry.index and entry0.label == entry.label:
# The java-estimated rates:
assert reaction.isIsomorphic(reaction0)
if not re.search('Average of:',entry.longDesc):
# exact match - unfair advantage. skip it
break
if reaction.isIsomorphic(reaction0, eitherDirection=False):
# it's in the right direction
kmodel = entry.data
# The following line replaces it with the python-estimated rate (so that you can compare the parity plots)
#kmodel = family.getKineticsForTemplate(template, degeneracy=reaction.degeneracy)
else:
# it's in the wrong direction
break # for now, skip it, because generating the reverse doesn't seem to work
kmodel = reaction.generateReverseRateCoefficient()
kmodel = convertKineticsToPerSiteBasis(kmodel, reaction.degeneracy)
# The prime database rates:
kdata = convertKineticsToPerSiteBasis(entry0.data, reaction0.degeneracy)
testSet.append([reaction, template, entry, kmodel, kdata])
break
testSets.append([testSetLabel, testSet])
# Generate parity plots at several temperatures
print 'Generating parity plots for {0}'.format(family.label)
import matplotlib.pyplot as plt
from matplotlib.widgets import CheckButtons
Tdata = [500,1000,1500,2000]
if kunits == 'm^3/(mol*s)':
kunits = 'cm^3/mol*s'; kfactor = 1.0e6
elif kunits == 's^-1':
kunits = 's^{-1}'; kfactor = 1.0
for T in Tdata:
stdev_total = 0; ci_total = 0; count_total = 0
# Initialize plot
if plot == 'interactive':
fig = pylab.figure(figsize=(10,8))
ax = plt.subplot(1, 1, 1)
else:
fig = pylab.figure(figsize=(6,5))
ax = plt.subplot(1, 1, 1)
ax = plt.subplot(1, 1, 1)
lines = []
legend = []
# Iterate through the test sets, plotting each
for testSetLabel, testSet in testSets:
kmodel = []; kdata = []
stdev = 0; ci = 0; count = 0
for reaction, template, entry, kineticsModel, kineticsData in testSet:
# Evaluate k(T) for both model and data at this temperature
if isinstance(kineticsModel, ArrheniusEP):
km = kineticsModel.getRateCoefficient(T, 0) * kfactor
else:
km = kineticsModel.getRateCoefficient(T) * kfactor
kmodel.append(km)
if isinstance(kineticsData, ArrheniusEP):
kd = kineticsData.getRateCoefficient(T, 0) * kfactor
else:
kd = kineticsData.getRateCoefficient(T) * kfactor
kdata.append(kd)
# Evaluate variance
stdev += (math.log10(km) - math.log10(kd))**2
count += 1
stdev_total += stdev
count_total += count
stdev = math.sqrt(stdev / (count - 1))
ci = scipy.stats.t.ppf(0.975, count - 1) * stdev
print "Test set {0} contained {1} rates.".format(testSetLabel, count)
print 'Confidence interval at T = {0:g} K for test set "{1}" = 10^{2:g}'.format(T, testSetLabel, ci)
# Add this test set to the plot
lines.append(ax.loglog(kdata, kmodel, 'o', picker=5)[0])
legend.append(testSetLabel)
stdev_total = math.sqrt(stdev_total / (count_total - 1))
ci_total = scipy.stats.t.ppf(0.975, count_total - 1) * stdev_total
print 'Total confidence interval at T = {0:g} K for all test sets = 10^{1:g}'.format(T, ci_total)
# Finish plots
xlim = pylab.xlim()
ylim = pylab.ylim()
lim = (min(xlim[0], ylim[0])*0.1, max(xlim[1], ylim[1])*10)
ax.loglog(lim, lim, '-k')
ax.loglog(lim, [lim[0] * 10**ci_total, lim[1] * 10**ci_total], '--k')
ax.loglog(lim, [lim[0] / 10**ci_total, lim[1] / 10**ci_total], '--k')
pylab.xlabel('Actual rate coefficient ({0})'.format(kunits))
pylab.ylabel('Predicted rate coefficient ({0})'.format(kunits))
pylab.legend(legend, loc=4)
pylab.title('%s, T = %g K' % (family.label, T))
pylab.xlim(lim)
pylab.ylim(lim)
def onpick(event):
index = lines.index(event.artist)
xdata = event.artist.get_xdata()
ydata = event.artist.get_ydata()
testSetLabel, testSet = testSets[index]
for ind in event.ind:
reaction, template, entry, kmodel, kdata = testSet[ind]
kunits = 'm^3/(mol*s)' if len(reaction.reactants) == 2 else 's^-1'
print label
print 'template = [%s]' % (', '.join([g.label for g in template]))
print 'entry = %r' % (entry)
print '%s' % (reaction)
print 'k_data = %9.2e %s' % (xdata[ind], kunits)
print 'k_model = %9.2e %s' % (ydata[ind], kunits)
connection_id = fig.canvas.mpl_connect('pick_event', onpick)
if plot == 'interactive':
rax = plt.axes([0.15, 0.65, 0.2, 0.2])
check = CheckButtons(rax, legend, [True for label in legend])
def func(label):
for index in range(len(lines)):
if legend[index] == label:
lines[index].set_visible(not lines[index].get_visible())
plt.draw()
check.on_clicked(func)
else:
fig.subplots_adjust(left=0.15, bottom=0.12, right=0.95, top=0.93, wspace=0.20, hspace=0.20)
pylab.savefig('%s_%g_test.pdf' % (family.label, T))
pylab.show()
################################################################################
def getRatesFromRMGJava(family_label, database, testSetLabels):
"""
Get rates from RMG java for the given reaction `family` using the
specified lists of depository components `testSetLabels` as the test sets.
The already-loaded RMG database should be given as the `database`
parameter.
"""
# RMG website must be on your python path, as that's where the RMG-java interface is defined.
from rmgweb.database import tools
family = database.kinetics.families[family_label]
for set_label in testSetLabels:
depository = getKineticsSet(family, set_label)
if depository is None:
continue
print "Running reactions from {0}/{1} through RMG-java...".format(family_label,set_label)
try:
output = rmgpy.data.kinetics.KineticsDepository(
label = '{0}/{1}_RMG_java'.format(family_label,set_label),
name = '{0}/{1}_RMG_java'.format(family_label,set_label),
shortDesc = "Reactions from {0}/{1} with kinetics estimated by RMG-Java.".format(family_label,set_label),
longDesc = "Reactions from {0}/{1} with kinetics estimated by RMG-Java.".format(family_label,set_label)
)
for entry in depository.entries.values():
reaction, template = database.kinetics.getForwardReactionForFamilyEntry(entry=entry, family=family.label, thermoDatabase=database.thermo)
reaction_from_java = tools.getRMGJavaKineticsFromReaction(reaction)
# make the longDesc before reversing entry.item
longDesc = """
The PrIMe reaction {0!s}
with description "{1}"
and kinetics {2!s}
was predicted by RMG-Java
as reaction {3!s}
with kinetics {4!s}
and comment "{5!s}"\n""".format(entry.item,
entry.longDesc,
entry.data,
reaction_from_java,
reaction_from_java.kinetics,
reaction_from_java.kinetics.comment)
if not reaction_from_java.isIsomorphic(entry.item):
print """
Reaction {0} from java is not the same as reaction sent to java.
Probably this is just a resonance isomer and it is in fact the same,
but if we can't pass the isomorphism check then we can't safely tell which
direction it should be in, so we will skip the reaction entirely.
""".format(entry.index)
continue #skip to next entry
if not reaction_from_java.isIsomorphic(entry.item, eitherDirection=False):
# reverse the entry.item so the kinetics from the java represent it in the direction as written.
temporary = entry.item.reactants
entry.item.reactants = entry.item.products
entry.item.products = temporary
longDesc += "The reaction was reversed from the direction given in PrIMe to match the RMG-Java kinetics\n"
entry.data = reaction_from_java.kinetics
entry.longDesc = longDesc
entry.reference = None
entry.referenceType = ''
entry.history.append([time.asctime(),user,'action','Replaced kinetics with those estimated using RMG-Java.'])
entry.shortDesc = "Rate estimated by RMG-Java"
output.entries[entry.index] = entry
print longDesc
finally:
filename = 'input/kinetics/families/{0}/{1}_RMG_Java.py'.format(family_label,set_label)
print "Saving results (so far) in "+filename
output.save(filename)
################################################################################
class ArgumentError(Exception):
"""
An exception raised when the command-line arguments given to the script are
invalid. Pass a string describing why the arguments are invalid.
"""
pass
################################################################################
def generate(args):
"""
Generate kinetics group additivity values for one (or more) reaction
families. The `args` parameter provides the results of parsing the
command-line arguments using argparse.
"""
# Make sure we have at least one family to generate values for
if len(args.family) == 0 and not args.all:
raise ArgumentError('No reaction families specified')
# Make sure the method is valid
method = args.method
if method not in ['KineticsData', 'Arrhenius', 'Arrhenius2']:
raise ArgumentError('Invalid method "{0}" specified'.format(method))
# If training sets are not specified, 'training' and 'rules' are used
trainingSets = args.training
if not trainingSets:
trainingSets = ['rules', 'training']
# Load the database
database = loadDatabase()
# If --all flag was specified, use all reaction families
families = []
if args.all:
families = database.kinetics.families.keys()
else:
families = args.family
# Iterate over each family, generating and saving group values
for label in families:
family = database.kinetics.families[label]
changed = generateKineticsGroupValues(
database = database,
family = family,
trainingSetLabels = trainingSets,
method = method,
)
if changed:
family.saveGroups(os.path.join('input', 'kinetics', 'families', label, 'groups.py'))
def evaluate(args):
"""
Evaluate kinetics group additivity values for one (or more) reaction
families. The `args` parameter provides the results of parsing the
command-line arguments using argparse.
"""
mode = 'java' if args.java else 'python'
plot = 'interactive' if args.interactive else 'normal'
# If test sets are not specified, choose some
testSets = args.test
if not testSets:
testSets = ['rules', 'training', 'PrIMe', 'test']
# Load the database
database = loadDatabase()
# If --all flag was specified, use all reaction families
families = []
if args.all:
families = database.kinetics.families.keys()
else:
families = args.family
# Iterate over each family, generating and saving group values
for label in families:
family = database.kinetics.families[label]
changed = evaluateKineticsGroupValues(
database = database,
family = family,
testSetLabels = testSets,
mode = mode,
plot = plot,
)
class VerySpecificException(Exception):
"""
This is just so that you can have an except block catch something that is never thrown,
so that you can disable the try/except thing without changing the code much.
"""
pass
def getFromJava(args):
"""
This function is called when the "java" command is given on the command
line. It causes group additivity kinetics values to be estimated by
RMG-java and saved for all reaction families.
"""
successes = []
failures = []
for family in database.kinetics.families.keys():
try:
getRatesFromRMGJava(
database = database,
family_label = family,
testSetLabels = ['PrIMe'],
)
except (VerySpecificException, Exception) as e:
print "FAILED on "+family
print "EXCEPTION: "+str(e)
failures.append(family)
else:
successes.append(family)
print 'COMPLETED making RMG-Java kinetics for:'
for family in successes:
print " "+family
print 'FAILED while making RMG-Java kinetics for:'
for family in failures:
print " "+family
#database.kinetics.saveGroups(os.path.join('input', 'kinetics', 'groups'))
################################################################################
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest='command', help='')
# generate - generate and save kinetics group additivity values
generateParser = subparsers.add_parser('generate', help='generate and save kinetics group values for one or more families')
generateParser.add_argument('family', metavar='<family>', type=str, nargs='*', help='the family to generate, or --all for all families')
generateParser.add_argument('-a', '--all', action='store_true', help='generate for all families')
generateParser.add_argument('-m', '--method', metavar='<method>', type=str, nargs='?', default='Arrhenius', help='the method to use')
generateParser.add_argument('--training', metavar='<trainingset>', type=str, nargs='*', help='the training set(s) to use')
generateParser.set_defaults(run=generate)
# evaluate - load and evaluate kinetics group additivity values
evaluateParser = subparsers.add_parser('evaluate', help='evaluate kinetics group values for one family')
evaluateParser.add_argument('family', metavar='<family>', type=str, nargs=1, help='the family to evaluate')
evaluateParser.add_argument('-a', '--all', action='store_true', help='generate for all families')
evaluateParser.add_argument('--test', metavar='<testset>', type=str, nargs='*', help='the test set(s) to use')
evaluateParser.add_argument('-i', '--interactive', action='store_true', help='evaluate using interactive plots')
evaluateParser.add_argument('--java', action='store_true', help='use RMG-Java estimates instead of RMG-Py estimates')
evaluateParser.set_defaults(run=evaluate)
# java - generate kinetics estimates from RMG-Java
javaParser = subparsers.add_parser('java', help='evaluate kinetics from RMG java for all families')
javaParser.set_defaults(run=getFromJava)
args = parser.parse_args()
try:
args.run(args)
except ArgumentError, e:
for choice, subparser in subparsers.choices.iteritems():
if args.command == choice:
subparser.print_help()
break
else:
parser.print_help()
print 'ArgumentError: {0}'.format(e)