-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpose_estimation.py
66 lines (54 loc) · 2.38 KB
/
pose_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
import logging
from PIL import Image
from transformers import AutoImageProcessor, Dinov2Model
vit_model = Dinov2Model.from_pretrained("facebook/dinov2-base")
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
class RegressionModel(nn.Module):
def __init__(self):
super(RegressionModel, self).__init__()
self.vit = vit_model
# self.fc1 = nn.Linear(768, 768)
# self.fc2 = nn.Linear(768, 768)
self.fc3 = nn.Linear(768, 128)
self.fc4 = nn.Linear(128, 2)
for param in self.vit.parameters():
param.requires_grad = True
def forward(self, x):
outputs = self.vit(x)
sequence_output = outputs[0]
x = sequence_output[:, 0, :] #[B,768]
# x = F.relu(self.fc1(x))
# x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x
def main(input_path, output_path, model_path, device="cuda"):
# inference
# input a image, and predict R and T
input_image = Image.open(input_path).convert('RGB')
input_image = processor(images=input_image, return_tensors="pt")
input_image = input_image['pixel_values'].to(device)
model = RegressionModel().float().to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
with torch.no_grad():
prediction = model(input_image)[0]
predicted_R, predicted_T = prediction[0], prediction[1]
# round to integer and write to output_path. You may change this part to round to the integer that can be divided by 10
predicted_R = round(predicted_R.item())
predicted_T = round(predicted_T.item())
with open(output_path, "w") as f:
f.write(f"{predicted_R} {predicted_T}")
logging.info(f'Predicted R: {predicted_R}, Predicted T: {predicted_T}')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input_path", type=str, default="./input_images_path")
parser.add_argument("--output_path", type=str, default="./output_pose_path")
parser.add_argument("--model_path", type=str, default="./model_path")
parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()
main(args.input_path, args.output_path, args.model_path, args.device)