-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_and_transformation.py
248 lines (213 loc) · 8.45 KB
/
training_and_transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# This file is used to train a GNN and then transform it into ONNX format, run this command:
# python training_and_transformation.py $dataset $seed_gnn
# $dataset is the name of dataset (QM7 or QM9)
# $seed_gnn is the random seed for traing GNN
# Note: please preprocess the dataset before using this file.
import torch
from torch_geometric.data import Data, Dataset
import os
import os.path as osp
import numpy as np
import sys
class MyOwnDataset(Dataset):
def __init__(self, root, length, transform=None, pre_transform=None, pre_filter=None):
self.root = root
self.length = length
super().__init__(root, transform, pre_transform, pre_filter)
def len(self):
return self.length
def get(self, idx):
data = torch.load(osp.join(self.root, f'data_{idx}.pt'))
return data
dataset_name = str(sys.argv[1]) # name of dataset
seed_gnn = int(sys.argv[2]) # random seed for training process
# relevant parameters for different datasets
if dataset_name == 'QM7':
dataset = MyOwnDataset(root = 'QM7/', length = 5822)
num_train = 5000
gnn_channels = [16, 32, 16, 4, 1]
elif dataset_name == 'QM9':
dataset = MyOwnDataset(root = 'QM9/', length = 108723)
num_train = 80000
gnn_channels = [32, 64, 16, 4, 1]
print(len(dataset))
print('=============================================================')
print('Information of an example from the dataset')
data = dataset[13] # Get a graph object.
print(data)
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Has isolated nodes: {data.has_isolated_nodes()}')
print(f'Has self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')
print('=============================================================')
torch.manual_seed(seed_gnn)
dataset_shuffle = dataset.shuffle()
# divide the dataset into training and test part
train_dataset = dataset_shuffle[:num_train]
test_dataset = dataset_shuffle[num_train:]
print('first training data: ', train_dataset[0].smiles)
print('first test data: ', test_dataset[0].smiles)
print(f'Number of training graphs: {len(train_dataset)}')
print(f'Number of test graphs: {len(test_dataset)}')
print('=============================================================')
from torch_geometric.loader import DataLoader
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
from torch.nn import Linear
import torch.nn.functional as F
from torch_geometric.nn import SAGEConv
from torch_geometric.nn import global_add_pool
# GNN architecture
class SAGE(torch.nn.Module):
def __init__(self, seed, gnn_channels):
super(SAGE, self).__init__()
torch.manual_seed(seed)
self.conv1 = SAGEConv(dataset.num_node_features, gnn_channels[0], 'sum')
self.conv2 = SAGEConv(gnn_channels[0], gnn_channels[1], 'sum')
self.lin1 = Linear(gnn_channels[1], gnn_channels[2])
self.lin2 = Linear(gnn_channels[2], gnn_channels[3])
self.lin3 = Linear(gnn_channels[3], gnn_channels[4])
def forward(self, x, edge_index, batch):
# SAGE layers for node embeddings
x = self.conv1(x, edge_index)
x = x.relu()
x = self.conv2(x, edge_index)
x = x.relu()
# pooling (or read out) layer
x = global_add_pool(x, batch) # [batch_size, hidden_channels]
# dense layers for final regressor
x = self.lin1(x)
x=x.relu()
x = self.lin2(x)
x=x.relu()
x = self.lin3(x)
return x
model = SAGE(seed_gnn, gnn_channels)
print(model)
#for param in model.parameters():
# print(param)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = torch.nn.L1Loss()
def train():
model.train()
for data in train_loader:
out = model(data.x, data.edge_index, data.batch).squeeze()
loss = criterion(out, data.y)
loss.backward()
optimizer.step()
optimizer.zero_grad()
def test(loader):
model.eval()
correct = 0
for data in loader:
out = model(data.x, data.edge_index, data.batch)
correct += torch.norm(out.squeeze()-data.y, p=1)
return correct / len(loader.dataset)
# training the GNN
for epoch in range(1, 101):
train()
train_acc = test(train_loader)
test_acc = test(test_loader)
print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')
# save the GNN
GNN_dir = f'GNN_models/{dataset_name}/'
if not os.path.exists(GNN_dir):
os.makedirs(GNN_dir)
torch.save(model, osp.join(GNN_dir, f'GNN_{seed_gnn}.pt'))
print('GNN model is saved')
model = torch.load(osp.join(GNN_dir, f'GNN_{seed_gnn}.pt'))
params_gnn = []
for param in model.parameters():
params_gnn.append(param.detach().numpy())
# print(len(params_gnn))
# transform a SAGE layer to a Dense layer
def SAGE_to_Dense(N, w1, w2, b):
out_channel, in_channel = w1.shape
weight = np.zeros((N*out_channel, N*in_channel))
bias = np.zeros(N*out_channel)
for u in range(N):
for v in range(N):
if u == v:
weight[u*out_channel:(u+1)*out_channel, v*in_channel:(v+1)*in_channel] = w2
else:
weight[u*out_channel:(u+1)*out_channel, v*in_channel:(v+1)*in_channel] = w1
bias[u*out_channel:(u+1)*out_channel] = b
return weight, bias
# construct the Dense NN for different N
from omlt.io import write_onnx_model_with_bounds
for N in range(4, 9):
print('N = ', N)
F = 16
L = 6
layers = ['gnn', 'gnn', 'add_pool', 'dense', 'dense', 'dense']
activations = [True, True, False, True, True, False]
params = []
params_index = 0
channels = []
channels.append(N*F)
for layer in layers:
if layer == 'gnn':
w1 = params_gnn[params_index]
params_index += 1
b = params_gnn[params_index]
params_index += 1
w2 = params_gnn[params_index]
params_index += 1
params.append(SAGE_to_Dense(N,w1,w2,b))
channels.append(w1.shape[0] * N)
elif layer == 'dense':
w = params_gnn[params_index]
params_index += 1
b = params_gnn[params_index]
params_index += 1
params.append((w,b))
channels.append(w.shape[0])
elif layer == 'add_pool':
channels.append(channels[-1] // N)
w = np.zeros((channels[-1],channels[-2]))
for i in range(channels[-1]):
for j in range(N):
w[i, i+j*channels[-1]] = 1.
b = np.zeros(channels[-1])
params.append((w,b))
print(channels)
for param in params:
print(param[0].shape, param[1].shape)
import torch
import torch.nn as nn
import torch.nn.functional as F
class PyTorchModel(nn.Module):
def __init__(self, L, params, activations):
super().__init__()
layers = []
for l in range(L):
layers.append(nn.Linear(params[l][0].shape[1], params[l][0].shape[0]))
layers[-1].weight = nn.Parameter(torch.tensor(params[l][0], dtype=torch.float64))
layers[-1].bias = nn.Parameter(torch.tensor(params[l][1], dtype=torch.float64))
if activations[l]:
layers.append(nn.ReLU(True))
self.layer = nn.Sequential(*layers)
def forward(self, x):
x = self.layer(x)
return x
model_dense = PyTorchModel(L, params, activations)
print(model_dense)
dummy_input = torch.zeros(channels[0], dtype=torch.float64)
dummy_input.requires_grad=True
lb = np.zeros(channels[0])
ub = np.ones(channels[0])
input_bounds = [(l, u) for l, u in zip(lb, ub)]
# save the Dense NN
Dense_dir = f'Dense_models/{dataset_name}/N={N}'
if not os.path.exists(Dense_dir):
os.makedirs(Dense_dir)
torch.onnx.export(
model_dense,
dummy_input,
osp.join(Dense_dir, f'Dense_{seed_gnn}.onnx'),
input_names=['input'],
output_names=['output'],
)
write_onnx_model_with_bounds(osp.join(Dense_dir, f'Dense_{seed_gnn}.onnx'), None, input_bounds)