-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcleanup_all_covid_calls.py
102 lines (86 loc) · 3.57 KB
/
cleanup_all_covid_calls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import pandas as pd
import numpy as np
from datetime import datetime
from constants import (
VIALINK_REQUIRED_COLUMNS_DISASTER,
TWO32_HELP_REQUIRED_COLUMNS,
TWO32_HELP_CALLS_KEY,
VIALINK_DISASTER_KEY,
HANGUP_VALUES,
)
from utils import (
explode_needs,
get_lat,
get_lng,
replacements,
)
pd.options.mode.chained_assignment = None
def cleanup(dfs):
### Cleanup for All COVID Calls dashboard
# step 1
# select required columns from VIA LINK’s Disaster Form
# pretty sure the distaster form is "Uncleaned data type 1 VIA LINK"
vialink1_df = dfs[VIALINK_DISASTER_KEY][VIALINK_REQUIRED_COLUMNS_DISASTER]
# step 2
# select required columns from 232-Help’s Disaster Form
two32_help_df = dfs[TWO32_HELP_CALLS_KEY][TWO32_HELP_REQUIRED_COLUMNS]
# step 3
# Create age ranges from date of birth
# use ranges 0-5, 6-12, 13-17, 18-24, 25-40, 41-59, 60+.
now = datetime.now()
bins = [0, 5, 13, 18, 25, 41, 60, 150]
labels = ["0-5", "6-12", "13-17", "18-24", "25-40", "41-59", "60+"]
dob = pd.to_datetime(
two32_help_df["Client Information - Date of Birth"], errors="coerce"
)
years_old = (now - dob).astype("timedelta64[Y]")
age_range = pd.cut(years_old, bins=bins, labels=labels, right=False, include_lowest=True)
AGE_RANGE_LEY = "Client Information - Age Group"
two32_help_df[AGE_RANGE_LEY] = age_range
two32_help_df.loc[two32_help_df[AGE_RANGE_LEY] == "0-5", AGE_RANGE_LEY] = None
# remove original Date of Birth column
two32_help_df.drop(columns=["Client Information - Date of Birth"], inplace=True)
# step 4
# add "Data From" column
vialink1_df["Data From"] = "VIA LINK"
two32_help_df["Data From"] = "232-HELP"
# step 5
# add data to master spreadsheet
# first merge "Call Outcome - What concerns/needs were identified" from 232-HELP
# into "Concerns/Needs - Concerns/Needs"
two32_help_df.rename(
columns={
"Call Outcome - What concerns/needs were identified?": "Concerns/Needs - Concerns/Needs"
},
inplace=True,
)
# new steps
# cleanup invalid values
vialink1_df["Contact Source - Program "].replace(
to_replace=datetime(2001, 2, 1, 0, 0), value=np.nan, inplace=True
)
# then combine data
master_df = pd.concat([vialink1_df, two32_help_df], join="outer", ignore_index=True)
# step 6
# add lat/lon columns
master_df["Latitude"] = master_df["PostalCode"].apply(get_lat)
master_df["Longitude"] = master_df["PostalCode"].apply(get_lng)
# step 7
# first put the values from "Needs - Basic Needs Requested" into "Concerns/Needs - Concerns/Needs"
cn = "Concerns/Needs - Concerns/Needs"
master_df["all_needs"] = master_df[[cn, "Needs - Basic Needs Requested"]].apply(
lambda x: "; ".join(x[x.notnull()]), axis=1
)
master_df.drop(columns=[cn, "Needs - Basic Needs Requested"], inplace=True)
master_df.rename(columns={"all_needs": cn}, inplace=True)
master_df = explode_needs(master_df, cn)
# step 8
# cleanup Concerns/Needs
master_df[cn] = master_df[cn].str.strip()
master_df.replace(to_replace=replacements, value=None, inplace=True)
# remove hangups
master_df = master_df[~master_df[cn].isin(HANGUP_VALUES)]
master_df = master_df[~master_df["Client Information - Call Type"].isin(HANGUP_VALUES)]
master_df = master_df[~master_df["Client Information - Call Outcome"].isin(HANGUP_VALUES)]
master_df = master_df[~master_df["Call Outcome - What was the outcome of this call?"].isin(HANGUP_VALUES)]
return master_df