-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjde.py
50 lines (46 loc) · 1.77 KB
/
jde.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from deBase import DERand1Bin
import numpy
from random import choice
class jDE(DERand1Bin):
"""
The original jDE by Brest et al., using one strategy
(DE/rand/1/bin).
"""
def __init__(self, *args, **kwargs):
"""
Extend to encode random f and cr values onto each member of the population.
"""
super(jDE, self).__init__(*args, **kwargs)
for i in range(self.population.size):
self.population.members[i].f = 0.1 + 0.9 * numpy.random.rand()
self.population.members[i].cr = numpy.random.rand()
def generateTrialMember(self, i):
"""
生成第i个个体变异重组后的个体
Base f and cr upon parent member, or regenerate (p=0.1).
"""
# Pick f and cr
parent = self.population.members[i]
if numpy.random.rand() > 0.1:
f = parent.f
else:
f = 0.1 + 0.9 * numpy.random.rand()
if numpy.random.rand() > 0.1:
cr = parent.cr
else:
cr = numpy.random.rand()
# Perform the mutation and crossover operations
mutant = self.mutation(i, f)
trialMember = self.crossover(i, mutant, cr)
# Note the parmeters used to generate the trial member & return
trialMember.f = f
trialMember.cr = cr
return trialMember
def selectNextGeneration(self, *args, **kwargs):
"""
Update the 'master' f and cr with the mean values in the population.
This is just for logging and could be safely removed from the algorithm.
"""
super(jDE, self).selectNextGeneration(*args, **kwargs)
self.f = numpy.mean([member.f for member in self.population.members])
self.cr = numpy.mean([member.cr for member in self.population.members])