-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjade.py
130 lines (116 loc) · 4.87 KB
/
jade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import population
from deBase import DECurrentToPBest1Bin
from collections import deque
import numpy
class DECurrentToPBest1BinWithArchive(DECurrentToPBest1Bin):
"""
Zhang and Sanderson describe how past failures can be exploited as clues
regarding promising solution directions using an 'archive'.
"""
def __init__(self, *args, **kwargs):
super(DECurrentToPBest1BinWithArchive, self).__init__(*args, **kwargs)
# Archive is implemented here as a double-ended queue (deque).
# As it overflows beyond np, the oldest items will be deleted.
# The original JADE simply deleted items at random. The archive
# itself may also be tournament-selected.
self.archive = deque(maxlen=self.population.size)
def mutation(self, i, f, n=1, k=None, p=0.05):
"""
A lot of this is, begrudgingly, copied and pasted from DECurrentToPBest1Bin;
however, this allows for a form of inheritance in which this specific
mutation method can be called from a child class without having to consider
the side effects of other parents/mix-ins.
"""
if k is None:
k = f
else:
try:
k = k()
except TypeError:
pass
# Obtain one of the p-best vectors at random (population is sorted by cost)
if p:
maxPBestIndex = numpy.ceil(p * self.population.size)
pBestIndex = numpy.random.randint(maxPBestIndex)
else:
pBestIndex = 0
pBestVector = self.population.members[pBestIndex].vector
# Obtain the current (aka target) vector
currentVector = self.population.members[i].vector
# Compute the base vector
baseVector = currentVector + k * (pBestVector - currentVector)
# Compute a difference vector
allMembers = self.population.members + list(self.archive)
rMain = self._nmeri(n, self.population.size, exclude=[i, pBestIndex])
rArchive = self._nmeri(n, len(allMembers), exclude=[i, pBestIndex] + rMain)
while rMain:
v1 = self.population.members[rMain.pop()].vector
v2 = allMembers[rArchive.pop()].vector
try:
difference += v1 - v2
except NameError:
difference = v1 - v2
return population.Member(baseVector + f * difference)
def trialMemberSuccess(self, i, trialMember):
"""
This function is extended to insert surpassed parents into the archive.
"""
self.archive.append(self.population.members[i])
super(DECurrentToPBest1BinWithArchive, self).trialMemberSuccess(i, trialMember)
class JADE(DECurrentToPBest1Bin):
"""
An implementation of Zhang & Sanderson's adaptive JADE algorithm,
without archive.
"""
def __init__(self, *args, **kwargs):
kwargs['f'] = 0.5
kwargs['cr'] = 0.5
super(JADE, self).__init__(*args, **kwargs)
def _lehmerMean(self, a):
"""
Returns the Lehmer mean of a list of numbers 'a'.
"""
return sum(x*x for x in a) / float(sum(a))
def generateTrialMember(self, i):
"""
Override to include randomisation controls and attribute marking.
"""
# f is Cauchy distributed variable, truncated to be 1 if fi > 1 or
# regenerated if f <= 0
while True:
fi = min(self.f + 0.1 * numpy.random.standard_cauchy(), 1)
if fi > 0:
break
mutant = self.mutation(i, fi, p=0.05)
# cr is a normally distributed variable, truncated to [0, 1]
cri = sorted((0, numpy.random.normal(self.cr, 0.1), 1))[1]
trialMember = self.crossover(i, mutant, cri)
# Mark the trial member with the parameters used to create it
trialMember.f = fi
trialMember.cr = cri
return trialMember
def trialMemberSuccess(self, i, trialMember):
"""
This function is extended to log successful f and cr.
"""
self.successfulCr.append(trialMember.cr)
self.successfulF.append(trialMember.f)
super(JADE, self).trialMemberSuccess(i, trialMember)
def selectNextGeneration(self, trialPopulation, c=0.1):
"""
Override to include adaptive logic.
c is an under-relaxation factor.
"""
self.successfulCr = []
self.successfulF = []
super(JADE, self).selectNextGeneration(trialPopulation)
# Update f and cr according to any successes. Note the use of the
# Lehmer mean to give more weight to large f.
if self.successfulCr:
self.cr = (1 - c) * self.cr + c * numpy.mean(self.successfulCr)
self.f = (1 - c) * self.f + c * self._lehmerMean(self.successfulF)
class JADEWithArchive(DECurrentToPBest1BinWithArchive, JADE):
"""
JADE with archive, implemented through multiple inheritance.
"""
pass