-
Notifications
You must be signed in to change notification settings - Fork 1
/
aes256.c
283 lines (250 loc) · 7.82 KB
/
aes256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#include "aes256.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#define BLOCKLEN 16
#define KEYLEN 32
#define KEYLENE 240
#define NB 4
#define NK 8
#define NR 14
typedef struct {
unsigned char rk[KEYLENE];
unsigned char iv[BLOCKLEN];
} ctx;
typedef unsigned char state[4][4];
static unsigned char sbox[256] = {
0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 };
static unsigned char rcon[11] = { 0x8d,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36 };
#define SBV(num) (sbox[(num)])
static void keyexpand(unsigned char* rk, unsigned char* Key) {
unsigned i,j,k;
unsigned char t[4];
// The first round key is the key itself.
for(i=0;i<NK;++i) {
rk[(i<<2)+0] = Key[(i<<2)+0];
rk[(i<<2)+1] = Key[(i<<2)+1];
rk[(i<<2)+2] = Key[(i<<2)+2];
rk[(i<<2)+3] = Key[(i<<2)+3];
}
// All other round keys are found from the previous round keys.
for(i=NK;i<NB*(NR+1);++i) {
{
k=(i-1)*4;
t[0]=rk[k+0];
t[1]=rk[k+1];
t[2]=rk[k+2];
t[3]=rk[k+3];
}
if(i%NK==0) {
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
unsigned char u=t[0];
t[0]=t[1];
t[1]=t[2];
t[2]=t[3];
t[3]=u;
}
// Function Subword()
{
t[0]=SBV(t[0]);
t[1]=SBV(t[1]);
t[2]=SBV(t[2]);
t[3]=SBV(t[3]);
}
t[0]^=rcon[i/NK];
}
if (i%NK==4) {
// Function Subword()
{
t[0]=SBV(t[0]);
t[1]=SBV(t[1]);
t[2]=SBV(t[2]);
t[3]=SBV(t[3]);
}
}
j = i*4; k=(i-NK)*4;
rk[j+0]=rk[k+0]^t[0];
rk[j+1]=rk[k+1]^t[1];
rk[j+2]=rk[k+2]^t[2];
rk[j+3]=rk[k+3]^t[3];
}
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void addrk(unsigned char r, state *s, unsigned char *rk) {
unsigned char i,j;
for(i=0;i<4;++i)
for(j=0;j<4;++j)
(*s)[i][j] ^= rk[(r*NB*4)+(i*NB)+j];
}
// The subbytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void subbytes(state *s) {
unsigned char i, j;
for(i=0;i<4;++i)
for(j=0;j<4;++j)
(*s)[j][i] = SBV((*s)[j][i]);
}
// The shiftrows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void shiftrows(state *s) {
unsigned char t;
// Rotate first row 1 columns to left
t = (*s)[0][1];
(*s)[0][1] = (*s)[1][1];
(*s)[1][1] = (*s)[2][1];
(*s)[2][1] = (*s)[3][1];
(*s)[3][1] = t;
// Rotate second row 2 columns to left
t = (*s)[0][2];
(*s)[0][2] = (*s)[2][2];
(*s)[2][2] = t;
t = (*s)[1][2];
(*s)[1][2] = (*s)[3][2];
(*s)[3][2] = t;
// Rotate third row 3 columns to left
t = (*s)[0][3];
(*s)[0][3] = (*s)[3][3];
(*s)[3][3] = (*s)[2][3];
(*s)[2][3] = (*s)[1][3];
(*s)[1][3] = t;
}
static unsigned char xtime(unsigned char x) {
return ((x<<1)^(((x>>7)&1)*0x1b));
}
// mixcols function mixes the columns of the state matrix
static void mixcols(state *s) {
unsigned char i,t,u,v;
for(i=0;i<4;++i) {
t = (*s)[i][0];
u = (*s)[i][0] ^ (*s)[i][1] ^ (*s)[i][2] ^ (*s)[i][3] ;
v = (*s)[i][0] ^ (*s)[i][1] ; v = xtime(v); (*s)[i][0] ^= v ^ u ;
v = (*s)[i][1] ^ (*s)[i][2] ; v = xtime(v); (*s)[i][1] ^= v ^ u ;
v = (*s)[i][2] ^ (*s)[i][3] ; v = xtime(v); (*s)[i][2] ^= v ^ u ;
v = (*s)[i][3] ^ t ; v = xtime(v); (*s)[i][3] ^= v ^ u ;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
// The compiler seems to be able to vectorize the operation better this way.
// See https://github.com/kokke/tiny-AES-c/pull/34
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
// cipher is the main function that encrypts the PlainText.
static void cipher(state *s, unsigned char* rk) {
unsigned char r=0;
// Add the First round key to the state before starting the rounds.
addrk(0,s,rk);
// There will be NR rounds.
// The first NR-1 rounds are identical.
// These NR rounds are executed in the loop below.
// Last one without mixcols()
for(r=1;;++r) {
subbytes(s);
shiftrows(s);
if(r==NR) break;
mixcols(s);
addrk(r,s,rk);
}
// Add round key to last round
addrk(NR,s,rk);
}
static unsigned char* hex(unsigned char *b, size_t n) {
char h[16]="0123456789abcdef";
size_t i;
unsigned char *r=malloc(1+n*2);
for(i=0;i<n;i++) {
r[2*i]=h[b[i]>>4];
r[2*i+1]=h[b[i]&0xf];
}
r[2*i]=0;
return r;
}
static unsigned char* unhex(unsigned char *h) {
size_t i,n = strlen((char*)h)/2;
unsigned char *r=malloc(n);
for(i=0;i<n;i++) {
sscanf((char*)h,"%2hhx",&r[i]);
h+=2;
}
return r;
}
static void aesinit(ctx *c, unsigned char *iv, unsigned char *key) {
keyexpand(c->rk,key);
memcpy(c->iv,iv,BLOCKLEN);
}
static void aescrypt(ctx *c, unsigned char *b, size_t n) {
unsigned char buffer[BLOCKLEN];
size_t i;
int j;
for(i=0,j=BLOCKLEN;i<n;++i,++j) {
if(j==BLOCKLEN) {
/* regen xor compliment in buffer */
memcpy(buffer, c->iv, BLOCKLEN);
cipher((state*)buffer,c->rk);
/* Increment iv and handle overflow */
for(j=(BLOCKLEN-1);j>=0;--j) {
/* inc will overflow */
if(c->iv[j]==255) { c->iv[j]=0; continue; }
c->iv[j] += 1;
break;
}
j=0;
}
b[i] = (b[i] ^ buffer[j]);
}
}
/* echo -n "charles" | openssl enc --aes-256-ctr -iv "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff" -K "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4" | xxd -p */
char* aes256e(char *s, unsigned char *iv, unsigned char *key) {
ctx c;
size_t i,n=strlen(s);
int m=16-n%16;
unsigned char *b=malloc(n+m);
char *r;
memcpy(b,s,n);
for(i=n;i<n+m;i++) b[i]=m;
aesinit(&c,iv,key);
aescrypt(&c,b,n+m);
r=(char*)hex(b,n+m);
free(b);
r[n*2]=0;
return r;
}
char* aes256d(char *s, unsigned char *iv, unsigned char *key) {
ctx c;
size_t i,n=strlen(s);
int m=32-n%32;
unsigned char *b=malloc(1+n+m),*r;
memcpy(b,s,n);
for(i=n;i<n+m;i++) b[i]=48;
b[i]=0;
r=unhex(b);
free(b);
aesinit(&c,iv,key);
aescrypt(&c,r,(n+m)/2);
r[n/2]=0;
return (char*)r;
}