We assume that you prepare raw images ImageNet2012 in the following path.
# replace this with yours
IMAGENET_RAW_PATH=/home1/irteam/user/jklee/food-fighters/models/tensorflow/imagenet_raw
You can create an mCE evaluation set for ImageNet using the following command:
python CE_validation_generator.py \
--validation_dir=${IMAGENET_RAW_PATH}/validation \
--output_dir=${IMAGENET_RAW_PATH}/validation_256_224 \
--RESIZE_SIZE=256 \
--CROP_SIZE=224
--RESIZE_SIZE=292
and --CROP_SIZE=256
means that
first resize the shorter size of each image to 256 pixels while the aspect ratio is main-tained, then we center crop image of 224x224 size.
When evaluating model with BigLittleNet, since the resolution is 256x256 for validation, make validation set using the following command:
python CE_validation_generator.py \
--validation_dir=${IMAGENET_RAW_PATH}/validation \
--output_dir=${IMAGENET_RAW_PATH}/validation_292_256 \
--RESIZE_SIZE=292 \
--CROP_SIZE=256